Understanding the molecular processes involved in the development and functional organization of biological systems, as well as their alterations in disease states, requires precise measurements of nucleic acid- and protein-level properties of cellular machinery across different cell types and developmental time points. This is particularly difficult to achieve in the human brain due to its cellular complexity and inaccessibility for experimentation. Here, we propose a Center with a multi-disciplinary group of investigators that will develop upon several cutting-edge genomics approaches in a unique and innovative way to elucidate molecular networks underlying human brain development and evolution. This will be achieved through the generation and exploration of integrated multi-dimensional genomic scale data generated from single cells and tissues of developing and adult human and non-human primate (NHP; chimpanzee and macaque) brains. We will also use these new sources of information to facilitate the identification of regulatory mutations in autism spectrum disorders (ASD) as well as to elucidate common and cell type specific molecular networks compromised in ASD. Finally, we implement approaches to model and functionally characterize of human-specific and ASD-associated regulatory mutations in the context of mouse brain development. Our proposed Center couples these research efforts with extensive training opportunities in human and comparative genomics. This organizational structure combines the expertise of each individual key investigator and establishes a CEGS that is capable of much more than each individual working alone and whose resources will create capabilities that are much more than the sum of its parts. Our work will pave the way for reconstructing molecular networks in human development and disease states, and provide a clear path to new and more effective treatments of major disorders.

Public Health Relevance

The identification and characterization of functional genomic elements in human and non-human primate neurodevelopment may lead to development of new and more effective treatments of major brain disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
3P50MH106934-03S1
Application #
9253596
Study Section
National Human Genome Research Institute Initial Review Group (GNOM)
Program Officer
Senthil, Geetha
Project Start
2014-09-19
Project End
2019-05-31
Budget Start
2016-07-01
Budget End
2017-05-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Yale University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
Zhu, Ying; Sousa, André M M; Gao, Tianliuyun et al. (2018) Spatiotemporal transcriptomic divergence across human and macaque brain development. Science 362:
Amiri, Anahita; Coppola, Gianfilippo; Scuderi, Soraya et al. (2018) Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362:
Rhie, Suhn K; Schreiner, Shannon; Witt, Heather et al. (2018) Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation. Sci Adv 4:eaav8550
Toker, Lilah; Mancarci, Burak Ogan; Tripathy, Shreejoy et al. (2018) Transcriptomic Evidence for Alterations in Astrocytes and Parvalbumin Interneurons in Subjects With Bipolar Disorder and Schizophrenia. Biol Psychiatry 84:787-796
Bae, Taejeong; Tomasini, Livia; Mariani, Jessica et al. (2018) Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359:550-555
Wang, Daifeng; Liu, Shuang; Warrell, Jonathan et al. (2018) Comprehensive functional genomic resource and integrative model for the human brain. Science 362:
Li, Mingfeng; Santpere, Gabriel; Imamura Kawasawa, Yuka et al. (2018) Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:
Bryois, Julien; Garrett, Melanie E; Song, Lingyun et al. (2018) Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 9:3121
Gusev, Alexander; Mancuso, Nicholas; Won, Hyejung et al. (2018) Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 50:538-548
An, Joon-Yong; Lin, Kevin; Zhu, Lingxue et al. (2018) Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362:

Showing the most recent 10 out of 39 publications