The neuroestorative and neuroprotective tropic actions of GDNF on midbrain dopamine (DA) neurons provide a promising therapeutic approach for the treatment of Parkinson's disease. As with many tropic factors, optimum success of this tropic factor depends on focal and controlled delivery of the protein to affect the function of DA neurons, without producing unwanted side effects. It is our central hypothesis that chronic intracerebroventricular or intraputamenal GDNF willproduce effects on damaged DA neurons with greater efficacy, potency and reduced side effects as compared to other methods of delivery. 1. We propose to use a novel indwelling pump that can deliver GDNF chronically in the freely-moving MPTP-lesioned monkey to evaluate two sites of delivery: the lateral ventricle and the putamen. 2. We will also investigate washout of GDNF and re-instatement of the trophic factor in both infusion paradigms. The different highly integrated Projects and Cores will provide key data regarding the functional effects of chronic GDNF treatments to DA neurons, and form the foundation for a Parkinson's Disease Center of Excellence. Project 1 will use microdialysis, in vivo electrochemistry and postmortem HPLC-EC methods to study the nigrostriatal pathway of unilateral MPTP-lesioned monkeys that have received chronic infusions of GDNF. Project 2 will investigate the behavioral consequences of the GDNF infusions and study potential functional changes to DA neurons using fMRI methods. Project 3 will carryout tract tracing and immunohistochemical measures of DA neurons in the same groups of chronically treated monkeys. The Cores A-D will all provide needed support for the experiments outline in Projects 1-3. These studies will answer key questions regarding the chronic delivery of a trophic factor in freely-moving and behaving rhesus monkeys. Such data could lay the foundation for the use of trophic molecules for the treatment of Parkinson's disease in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS039787-02
Application #
6188437
Study Section
Special Emphasis Panel (ZNS1-SRB-K (01))
Program Officer
Oliver, Eugene J
Project Start
1999-09-30
Project End
2004-07-31
Budget Start
2000-08-01
Budget End
2001-07-31
Support Year
2
Fiscal Year
2000
Total Cost
$1,004,532
Indirect Cost
Name
University of Kentucky
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
832127323
City
Lexington
State
KY
Country
United States
Zip Code
40506
Stenslik, M J; Evans, A; Pomerleau, F et al. (2018) Methodology and effects of repeated intranasal delivery of DNSP-11 in awake Rhesus macaques. J Neurosci Methods 303:30-40
Stenslik, Mallory J; Potts, Lisa F; Sonne, James W H et al. (2015) Methodology and effects of repeated intranasal delivery of DNSP-11 in a rat model of Parkinson's disease. J Neurosci Methods 251:120-9
Fan, X T; Zhao, F; Ai, Y et al. (2014) Cortical glutamate levels decrease in a non-human primate model of dopamine deficiency. Brain Res 1552:34-40
Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin et al. (2014) Dynamic changes in dopamine neuron function after DNSP-11 treatment: effects in vivo and increased ERK 1/2 phosphorylation in vitro. Peptides 54:1-8
Stephens, Michelle L; Williamson, Anne; Deel, Megan E et al. (2014) Tonic glutamate in CA1 of aging rats correlates with phasic glutamate dysregulation during seizure. Epilepsia 55:1817-25
Littrell, Ofelia M; Granholm, Ann-Charlotte; Gerhardt, Greg A et al. (2013) Glial cell-line derived neurotrophic factor (GDNF) replacement attenuates motor impairments and nigrostriatal dopamine deficits in 12-month-old mice with a partial deletion of GDNF. Pharmacol Biochem Behav 104:10-9
Littrell, O M; Fuqua, J L; Richardson, A D et al. (2013) A synthetic five amino acid propeptide increases dopamine neuron differentiation and neurochemical function. Neuropeptides 47:43-9
van Bregt, Daniel R; Thomas, Theresa Currier; Hinzman, Jason M et al. (2012) Substantia nigra vulnerability after a single moderate diffuse brain injury in the rat. Exp Neurol 234:8-19
Littrell, Ofelia M; Pomerleau, Francois; Huettl, Peter et al. (2012) Enhanced dopamine transporter activity in middle-aged Gdnf heterozygous mice. Neurobiol Aging 33:427.e1-14
Hascup, Kevin N; Bao, Xiaodong; Hascup, Erin R et al. (2011) Differential levels of glutamate dehydrogenase 1 (GLUD1) in Balb/c and C57BL/6 mice and the effects of overexpression of the Glud1 gene on glutamate release in striatum. ASN Neuro 3:

Showing the most recent 10 out of 63 publications