Project II. Long Noncoding RNAs as Epigenomic Modulators and CSF Biomarkers in Parkinson's Disease This proposal will explore the presence and differential expression of non-protein-coding RNAs (ncRNAs) in cerebrospinal fluid (CSF) and tissue samples from patients with Parkinson's disease (PD) and their relationship to the methylation status of the protein coding genes they regulate. In addition, this project will aim to develop biomarker panels in order to diagnose PD, monitor disease progression and response to treatment. The mammalian genome is subject to a vast array of transcriptional events, generating a wide spectrum of functional RNA species. These molecules range from the familiar protein-coding mRNAs to long non-coding transcripts whose diversity appears to match that of mRNAs. We hypothesize that the ncRNAs are deeply involved in PD pathophysiology, through induction of epigenetic modifications. NcRNAs may be proven helpful to explain the causes, to define novel therapeutic targets and to delineate biomarkers for PD. We will harness the power of sequencing technologies to discover novel RNAs involved in PD, in order to shed light on pathological processes and provide a basis for improved diagnosis and patient care. Recent publications have revealed an important role for dysregulation of ncRNAs in various human neuropathologies, such as Alzheimer's disease [1, 2], PD [3] and Fragile X mental retardation [4]. Our study will allow the discovery of novel ncRNAs in the CSF and brain of PD subjects and define the mechanistic role these ncRNAs play in the modification of epigenetic marks, such as CpG methylation. We will examine the RNA and protein content of CSF from PD subjects for biomarker evidence of these epigenetic changes. We strongly believe that we will be able to describe the genome wide effects of ncRNAs expression on methylation status and tie this to a practical and measurable biomarker.
Showing the most recent 10 out of 45 publications