This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Fitness disadvantage of the transitional intermediates compared to the initial R5 viruses has been suggested to constitute one of the blockades to coreceptor switching, explaining the late appearance of X4 viruses. Using a simian model for human immunodeficiency virus type 1 (HIV-1) coreceptor switching, we demonstrate in this study that similar molecular evolutionary pathways to coreceptor switch occur in more than one R5 simian/human immunodeficiency virus (SHIV)(SF162P3N)-infected macaque. In infected animals where multiple pathways for expansion or switch to CXCR4 coexist, fitness of the transitional intermediates in coreceptor usage efficiency influences their outgrowth and representation in the infecting virus population. Dualtropic and X4 viruses appear at different disease stages, but they have lower entry efficiency than the coexisting R5 strains, which may explain why they do not outcompete the R5 viruses. Similar observations were made in two infected macaques with coreceptor switch, providing in vivo evidence that fitness disadvantage is an obstacle to X4 emergence and expansion.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000164-50
Application #
8358042
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$57,750
Indirect Cost
Name
Tulane University
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
053785812
City
New Orleans
State
LA
Country
United States
Zip Code
70118
Mahalingam, Ravi; Kaufer, Benedikt B; Ouwendijk, Werner J D et al. (2018) Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 92:
Kumar, Vinay; Mansfield, Joshua; Fan, Rong et al. (2018) miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPAR? and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Immunol 200:2677-2689
Parthasarathy, Geetha; Philipp, Mario T (2018) Intracellular TLR7 is activated in human oligodendrocytes in response to Borrelia burgdorferi exposure. Neurosci Lett 671:38-42
McNamara, Ryan P; Costantini, Lindsey M; Myers, T Alix et al. (2018) Nef Secretion into Extracellular Vesicles or Exosomes Is Conserved across Human and Simian Immunodeficiency Viruses. MBio 9:
Calenda, Giulia; Villegas, Guillermo; Barnable, Patrick et al. (2017) MZC Gel Inhibits SHIV-RT and HSV-2 in Macaque Vaginal Mucosa and SHIV-RT in Rectal Mucosa. J Acquir Immune Defic Syndr 74:e67-e74
Datta, Dibyadyuti; Bansal, Geetha P; Grasperge, Brooke et al. (2017) Comparative functional potency of DNA vaccines encoding Plasmodium falciparum transmission blocking target antigens Pfs48/45 and Pfs25 administered alone or in combination by in vivo electroporation in rhesus macaques. Vaccine 35:7049-7056
Yi, Fei; Guo, Jia; Dabbagh, Deemah et al. (2017) Discovery of Novel Small-Molecule Inhibitors of LIM Domain Kinase for Inhibiting HIV-1. J Virol 91:
Jorgensen, Matthew J; Lambert, Kelsey R; Breaux, Sarah D et al. (2017) Pair housing of Vervets/African Green Monkeys for biomedical research. Am J Primatol 79:1-10
Ramesh, Geeta; Martinez, Alejandra N; Martin, Dale S et al. (2017) Effects of dexamethasone and meloxicam on Borrelia burgdorferi-induced inflammation in glial and neuronal cells of the central nervous system. J Neuroinflammation 14:28
Parthasarathy, Geetha; Philipp, Mario T (2017) Receptor tyrosine kinases play a significant role in human oligodendrocyte inflammation and cell death associated with the Lyme disease bacterium Borrelia burgdorferi. J Neuroinflammation 14:110

Showing the most recent 10 out of 352 publications