We have continued to examine the mucosal immunopathogenesis of SIV infection in the intestinal mucosa in order to determine why selective and profound CD4+ T cell depletion occurs specifically within mucosal tissues in early SIV infection To accomplish this, we have broadened our studies to extensively characterize the immunophenotype of the CD4+ T cells that are targeted in early SIV infection by four-color flow cytometry By examining uninfected normal rhesus macaques, we have shown that intestinal CD4+ T cells consist of a homogenous population of activated (CD69+CD38+HLA-DR+), memory (CD45RA-, L-selectin-), CD2+CD3+CD4+ T cells Since in vitro studies of both HIV and SIV have demonstrated that optimal viral replication occurs specifically within activated, memory CD4+ T cells, we hypothesized that the reason the intestinal cells are rapidly eliminated was that they are essentially all activated, memory cells To test this hypothesis, we followed acutely i nfec ted animals by four-color immunophenotyping of peripheral blood lymphocytes to determine whether a loss of this subset could be detected in other tissues Although activated, memory CD4+ T cells represent only a small proportion of peripheral blood lymphocytes, we could consistently find an early loss of this particular subset of CD4+ T cells could also be detected in the blood in relatively the same time frame as the intestinal CD4+ T cell depletion Combined, our data indicate that activated memory CD4+ T cells are the initial target for viral infection and amplification Future studies will explore the mechanisms by which these cells are depleted (apoptosis versus direct cell lysis, etc )

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000168-40
Application #
6453754
Study Section
Project Start
2001-05-01
Project End
2002-04-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
40
Fiscal Year
2001
Total Cost
$111,112
Indirect Cost
Name
Harvard University
Department
Type
DUNS #
082359691
City
Boston
State
MA
Country
United States
Zip Code
02115
Seth, Nitin; Simmons, Heather A; Masood, Farah et al. (2018) Model of Traumatic Spinal Cord Injury for Evaluating Pharmacologic Treatments in Cynomolgus Macaques (Macaca fasicularis). Comp Med 68:63-73
Mauney, Sarah A; Woo, Tsung-Ung W; Sonntag, Kai C (2018) Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods Mol Biol 1723:203-221
Shang, L; Smith, A J; Reilly, C S et al. (2018) Vaccine-modified NF-kB and GR signaling in cervicovaginal epithelium correlates with protection. Mucosal Immunol 11:512-522
Sonntag, Kai-Christian; Woo, Tsung-Ung W (2018) Laser microdissection and gene expression profiling in the human postmortem brain. Handb Clin Neurol 150:263-272
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Duke, Angela N; Meng, Zhiqiang; Platt, Donna M et al. (2018) Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABAA Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. J Pharmacol Exp Ther 366:145-157
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Termini, James M; Church, Elizabeth S; Silver, Zachary A et al. (2017) Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. J Virol 91:
Ma, Qi; Ruan, Hongyu; Peng, Lisheng et al. (2017) Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci U S A 114:E8760-E8769
Shang, L; Duan, L; Perkey, K E et al. (2017) Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 10:508-519

Showing the most recent 10 out of 365 publications