The broad long-term objective of this proposal is to understand how memory loss occurs in Alzheimer's disease (AD). In 2006, we have shown that a specific amyloid beta (AB) assembly that we named AB*56 was likely the cause of cognitive decline in the mouse model of AD, Tg2576. As part of the mentored phase of this award (K99), we confirmed the existence of AB*56 in the human brain tissues and cerebrospinal fluid. We measured the prominence of several oligomers including AB*56 in three clinical groups: non-cognitively impaired age-matched normals (NCI), mild cognitive impairment (MCI) and Alzheimer's disease(AD). We found that AB*56 levels rise during the 5th decade of life during which the first signs of memory decline is noticeable (also known as AAMI) and its levels decrease with disease progression. Trimers peaked in MCI brain tissues while dimers slowly increased with dementia. In addition, we identified a putative receptor for AB*56. both in tissues from transgenic animals as well as in human brains. With this application, we propose to decipher the mechanism of action of AB*56 combining in vitro and in vivo paradigms. Finally we plan to evaluate whether AB oligomers including AB*56 represent the AB entity(ies) connecting the two phenotypic hallmarks of the disease, namely amyloid plaques and neurofibrillary tangles.

Public Health Relevance

If completed this proposal could provide novel targets for slowing down or preventing Alzheimer's disease based on the observation that multiple oligomers may be altering neuronal function at different stages of the disease (during the asymptomatic and symptomatic phases of AD, i.e. MCI and AD). Since AB*56 rises first with ageing in humans, it represents an ideal candidate molecule to study in the context of AD prevention.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Transition Award (R00)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Snyder, Stephen D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Medicine
United States
Zip Code
Chiang, Angie C A; Fowler, Stephanie W; Reddy, Rohit et al. (2018) Discrete Pools of Oligomeric Amyloid-? Track with Spatial Learning Deficits in a Mouse Model of Alzheimer Amyloidosis. Am J Pathol 188:739-756
Amar, Fatou; Sherman, Mathew A; Rush, Travis et al. (2017) The amyloid-? oligomer A?*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci Signal 10:
Alfonso, Stephanie I; Callender, Julia A; Hooli, Basavaraj et al. (2016) Gain-of-function mutations in protein kinase C? (PKC?) may promote synaptic defects in Alzheimer's disease. Sci Signal 9:ra47
Sherman, Mathew A; LaCroix, Michael; Amar, Fatou et al. (2016) Soluble Conformers of A? and Tau Alter Selective Proteins Governing Axonal Transport. J Neurosci 36:9647-58
Lesne, Sylvain E (2014) Toxic oligomer species of amyloid-? in Alzheimer's disease, a timing issue. Swiss Med Wkly 144:w14021
Fowler, Stephanie W; Chiang, Angie C A; Savjani, Ricky R et al. (2014) Genetic modulation of soluble A? rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci 34:7871-85
Larson, Megan; Sherman, Mathew A; Amar, Fatou et al. (2012) The complex PrP(c)-Fyn couples human oligomeric A? with pathological tau changes in Alzheimer's disease. J Neurosci 32:16857-71a
Larson, Megan E; Sherman, Mathew A; Greimel, Susan et al. (2012) Soluble ?-synuclein is a novel modulator of Alzheimer's disease pathophysiology. J Neurosci 32:10253-66
Larson, Megan E; Lesné, Sylvain E (2012) Soluble A? oligomer production and toxicity. J Neurochem 120 Suppl 1:125-39
Sherman, Mathew A; Lesné, Sylvain E (2011) Detecting a?*56 oligomers in brain tissues. Methods Mol Biol 670:45-56