The human microbiome is gaining widespread attention for its link to host health and disease. This is particularly true of the cystic fibrosis airways, where a complex microbial community is recognized to be the major cause of patient mortality. In addition to Pseudomonas aeruginosa, a recent surge in culture- independent studies has generated a growing list of suspected pathogens and their correlation to disease progression. Yet, our inability to effectively treat these patients remains due to a lack of understanding of the CF lung environment and how specific chemical parameters define the presence or absence of a given bacterial species. In natural environments, such as a marine sediment, defining the effect of environmental chemistry on the microbial community is paramount in fully understanding a given ecosystem. Yet, this approach in a medical microbiology context is seldom used. Here, my overarching goal is to apply standard environmental microbiology principles and methodologies to test the hypothesis that the complex chemistry of the bronchial tree affects its resident microflora on multiple scales. Recently, we discovered a highly significant correlation between a class of microbially-produced metabolites (phenazines), microbiome composition, and lung function decline. In the K99 phase of this award, the overall goal will be to expand on these initial observations, and to broadly investigate the effect of the cystic fibrosis lung environment on its microbiome. Using a cohort of pediatric patients, I will first test that phenazines alter the redox state of iron, which ultimately correlates to a shift in the overall lung microbiome and disease progression. In addition, I will use novel imaging methods to investigate the cellular response of individual species (particularly P. aeruginosa) at the single cell level to changes in environmental chemistry (specifically in response to iron). These studies will reveal the potential of using single cell transcriptional activity as a direct readout of the ambient environment of the airways, and will potentially guide the design of novel therapeutics based on environmental chemistry. Next, we will apply these methods to explanted lung samples in order to better understand the spatial heterogeneity of microbial communities throughout the bronchial tree. With this information in hand, these studies will ultimately be expanded in the R00 phase of the award to include other metabolites and chemical parameters within the respiratory tract, and other sites of infection within the host. Altogether, this systems approach to understanding the ecology of microbial infections will change the way we think about the microbiome and its link to health and disease, and has the potential for development of novel therapeutic strategies.

Public Health Relevance

The aim of this study is to use ecological approaches to understand how microbial pathogens co-evolve with the chemical environment of the human body. There now exists a wealth of data on the human microbiome and its link to health and disease, yet the environmental parameters that define the presence or absence of specific members in a range of infectious contexts remain poorly understood. Understanding the mechanisms whereby pathogens invade and adapt to various host environments may reveal novel targets for antimicrobial therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Transition Award (R00)
Project #
4R00HL114862-02
Application #
8699293
Study Section
Special Emphasis Panel (NSS)
Program Officer
Tigno, Xenia
Project Start
2013-08-15
Project End
2016-07-31
Budget Start
2013-08-15
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$237,045
Indirect Cost
$75,361
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Lucas, Sarah K; Yang, Robert; Dunitz, Jordan M et al. (2018) 16S rRNA gene sequencing reveals site-specific signatures of the upper and lower airways of cystic fibrosis patients. J Cyst Fibros 17:204-212
Flynn, Jeffrey M; Phan, Chi; Hunter, Ryan C (2017) Genome-Wide Survey of Pseudomonas aeruginosa PA14 Reveals a Role for the Glyoxylate Pathway and Extracellular Proteases in the Utilization of Mucin. Infect Immun 85:
Flynn, Jeffrey M; Niccum, David; Dunitz, Jordan M et al. (2016) Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease. PLoS Pathog 12:e1005846
Whiteson, Katrine L; Bailey, Barbara; Bergkessel, Megan et al. (2014) The upper respiratory tract as a microbial source for pulmonary infections in cystic fibrosis. Parallels from island biogeography. Am J Respir Crit Care Med 189:1309-15
Hunter, Ryan C; Asfour, Fadi; Dingemans, Jozef et al. (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. MBio 4: