Local immunoresistance and systemic immunosuppression represent major impediments to effective immunotherapy for gliomas. The immune response to vaccination is largely dependent on tumor specific CD8+ cytolytic T cells, and can be suppressed by induction of T cell apoptosis. B7-Homologue 1 (B7-H1) is a surface protein on glioma cells that binds to the programmed death 1 (PD-1) receptor on T cells and can induce anergy or apoptosis. Tumor-associated macrophages are thought to contribute to the local immune response through antigen presentation and the release of specific cytokines. Recent evidence suggests that macrophages can be polarized to pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, defined by their cascade of cytokines. In addition, this evidence demonstrates that tumor-associated macrophages can express B7-H1 at the cell surface and can induce apoptosis of activated T cells, independent of glioma cells. Macrophage- mediated suppression of the cytolytic T cell response may be a primary factor in the local and systemic immunoresistance seen in glioma patients. We will provide preliminary evidence that 1) B7-H1 expression on macrophages is increased in peripheral blood and tumor from glioblastoma patients, 2) glioma cells can stimulate B7-H1 expression in peripheral monocytes through a soluble factor, 3) B7-H1 expressing monocytes induce CTL apoptosis, 4) glioma cells stimulate monocytes to produce IL-10, and 5) IL-10 is sufficient to activate B7-H1 expression in monocytes. Based on these data, we hypothesize that tumor-derived soluble factors from gliomas induce IL-10 production in tumor-associated macrophages, which activates B7- H1 expression through autocrine signaling. In this proposal we will evaluate the spatiotemporal distribution of B7-H1 on tumor-associated macrophages relative to tumor burden and investigate the mechanisms by which B7-H1 expression is induced. Specifically, we will study the role of IL-10 autocrine signaling and activation of the STAT3 pathway to evaluate their involvement in this process. We will also take an unbiased protein purification approach to identify the glioma-derived factor responsible for upregulation of B7-H1 on monocytes.

Public Health Relevance

Glioblastoma (GBM) is a terminal diagnosis with poor survival despite current standard of care therapies. Much effort and emphasis has been placed on developing immunotherapy for the treatment of GBM;however, local tumor immunoresistance and systemic immunosuppression have limited the clinical efficacy of vaccine therapies. Tumor-associated macrophages have been shown to exert an immunosuppressive effect in glioma through the release of anti-inflammatory cytokines. We now describe a newly understood mechanism of immunoresistance in macrophages, surface expression of B7-H1, and propose innovative strategies to identify the glioma-derived factor that induces expression. This work promises to identify new targets for intervention to limit glioma-induced immunosuppression and increase the efficacy of immunotherapy.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Transition Award (R00)
Project #
Application #
Study Section
No Study Section (in-house review) (NSS)
Program Officer
Fountain, Jane W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
DiDomenico, Joseph; Lamano, Jonathan B; Oyon, Daniel et al. (2018) The immune checkpoint protein PD-L1 induces and maintains regulatory T cells in glioblastoma. Oncoimmunology 7:e1448329
Bloch, Orin; Lim, Michael; Sughrue, Michael E et al. (2017) Autologous Heat Shock Protein Peptide Vaccination for Newly Diagnosed Glioblastoma: Impact of Peripheral PD-L1 Expression on Response to Therapy. Clin Cancer Res 23:3575-3584
Lamano, Jonathan B; Ampie, Leonel; Choy, Winward et al. (2016) Immunomonitoring in glioma immunotherapy: current status and future perspectives. J Neurooncol 127:1-13
Ampie, Leonel; Choy, Winward; Lamano, Jonathan B et al. (2015) Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol 123:441-8