Reactive oxygen species (ROS) are involved in the hepatotoxicity of high concentrations of ethanol. A number of mechanisms such as decreased concentrations of mitochondrial GSH, inhibition of respiration and enhanced susceptibility to hypoxia have been invoked. The focus of this proposal is to examine the effects of ethanol on hepatic mitochondrial function mediated through nitric oxide (NO), reactive nitrogen species (RNS) and ROS. Previous studies and preliminary data have shown that a biphasic effect of NO can be demonstrated in mitochondria in terms of control of both respiratory function and the processes leading to cytochrome c release. Although many of the mitochondrial defects elicited by ethanol can also be caused by RNS a mechanistic link has not been examined. The concept developed in this proposal is that NO is converted to a mitochondrial toxin on ethanol consumption by reaction with ROS. Key findings in support of this hypothesis are 1) iNOS is induced on ethanol consumption in vivo and its product, NO, is a potent regulator of mitochondrial respiration 2) this is associated with increased tyrosine nitration-a marker of RNS 3) NO, in contrast, inhibits cytochrome c release from mitochondria, whereas RNS such as peroxynitrite, promotes release of this pro-apoptotic factor 4) chronic ethanol consumption leads to greater sensitivity of the hepatocyte to hypoxic stress. These data have led to the hypothesis that a critical mechanism contributing to alcohol hepatotoxicity is through NO-dependent modification of mitochondrial function. This concept will be tested by pursuit of the following Specific Aims in wild type and INOS knock out mice consuming ethanol: 1. Determine the effects of increased NO by chronic alcohol consumption on mitochondrial respiration, antioxidant capacity and ROS/RNS formation. 2. Determine the effect of chronic alcohol consumption on cytochrome c release and mitochondrial protein modification in isolated organelle and hepatocytes. 3. Determine the NO-dependent effects on mitochondrial protein synthesis and the response of hepatocytes to hypoxic stress after chronic consumption of ethanol.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA013395-03
Application #
6711814
Study Section
Alcohol and Toxicology Subcommittee 4 (ALTX)
Program Officer
Velazquez, Jose M
Project Start
2002-03-01
Project End
2007-02-28
Budget Start
2004-03-01
Budget End
2005-02-28
Support Year
3
Fiscal Year
2004
Total Cost
$287,000
Indirect Cost
Name
University of Alabama Birmingham
Department
Pathology
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Mitchell, Tanecia; Johnson, Michelle S; Ouyang, Xiaosen et al. (2013) Dysfunctional mitochondrial bioenergetics and oxidative stress in Akita(+/Ins2)-derived ?-cells. Am J Physiol Endocrinol Metab 305:E585-99
Mitchell, Tanecia; Chacko, Balu; Ballinger, Scott W et al. (2013) Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochem Soc Trans 41:127-33
Reily, Colin; Mitchell, Tanecia; Chacko, Balu K et al. (2013) Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 1:86-93
Dodson, Matthew; Darley-Usmar, Victor; Zhang, Jianhua (2013) Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 63:207-21
Cummins, Timothy D; Higdon, Ashlee N; Kramer, Philip A et al. (2013) Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products. Free Radic Biol Med 59:56-68
Mitchell, Tanecia; Darley-Usmar, Victor (2012) Metabolic syndrome and mitochondrial dysfunction: insights from preclinical studies with a mitochondrially targeted antioxidant. Free Radic Biol Med 52:838-40
Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J A et al. (2012) Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med 52:1-6
Higdon, Ashlee; Diers, Anne R; Oh, Joo Yeun et al. (2012) Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442:453-64
Darley-Usmar, Victor M; Ball, Lauren E; Chatham, John C (2012) Protein O-linked *-N-acetylglucosamine: a novel effector of cardiomyocyte metabolism and function. J Mol Cell Cardiol 52:538-49
Mitchell, Tanecia; Chacko, Balu K; Darley-Usmar, Victor (2012) Controlling radicals in the powerhouse: development of MitoSOD. Chem Biol 19:1217-8

Showing the most recent 10 out of 35 publications