The extrinsic apoptotic pathway is a fundamental means for inducing and executing apoptosis in the cell. The central signaling platform of this pathway is the death inducing signaling complex (DISC). DISC formation is triggered by an extracelluar signal and initiates the activation of caspase-8, inducing the caspase cascade and ultimately causing the demise of the doomed cell. Not surprisingly the DISC has been implicated in several human disorders, various cancers, and is suggested to play a particularly poignant role in hepatoma, cancer drug toxicity and the negative effects of alcohol abuse on the liver. This proposal aims to elucidate the mechanism of DISC formation by focusing on the prominent Fas/FADD/caspase-8 DISC. Despite a plethora of data the exact mechanism of DISC formation, that is the nature of the switch which prompts uncomplexed Fas, FADD and caspase-8 to form a death inducing signaling platform, remains elusive. We have developed a hypothesis identifying a conformational change in FADD from a latent closed form into an active open form as the key event in DISC formation. We propose a comprehensive investigation of the DISC using a unique combination of structural, biochemical and cell biology techniques to determine the mechanism of DISC formation and test our hypothesis. This work represents the missing link between the information available and a complete understanding of the DISC. Additionally this research will be paramount for the development of drugs targeting the DISC and the proposed conformational switch in FADD to foster our fight against cancer, drug toxicity and drug resistance.

Public Health Relevance

The death inducing signaling complex (DISC) is the central signaling platform in the initiation of programmed cell death by extracellular factors. Our research is designed to elucidate the mechanism of DISC formation by studying the prototypical Fas/FADD/caspase-8 DISC and to test our hypothesis, that the key event in DISC formation is a conformational switch in FADD. Since the DISC represents a prime target for homeostasis and proliferation in liver cells, it is an ideal candidate for drug development against hepatocellular carcinoma and the damaging effect of alcohol abuse. ? ? ? ? ?

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Research Project (R01)
Project #
Application #
Study Section
Gastrointestinal Cell and Molecular Biology Study Section (GCMB)
Program Officer
Gentry, Thomas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Chiaretti, Sabina; Messina, Monica; Grammatico, Sara et al. (2018) Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol 181:642-652
Weijman, Johannes F; Riedl, Stefan J; Mace, Peter D (2017) Structural Studies of ERK2 Protein Complexes. Methods Mol Biol 1487:53-63
Lechtenberg, Bernhard C; Riedl, Stefan J (2016) Rosetta Stone of NLR Innate Immunity. Trends Biochem Sci 41:6-8
Lechtenberg, Bernhard C; Rajput, Akhil; Sanishvili, Ruslan et al. (2016) Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529:546-50
Lechtenberg, Bernhard C; Mace, Peter D; Riedl, Stefan J (2014) Structural mechanisms in NLR inflammasome signaling. Curr Opin Struct Biol 29:17-25
Ardecky, Robert J; Welsh, Kate; Finlay, Darren et al. (2013) Design, synthesis and evaluation of inhibitor of apoptosis protein (IAP) antagonists that are highly selective for the BIR2 domain of XIAP. Bioorg Med Chem Lett 23:4253-7
Proell, Martina; Gerlic, Motti; Mace, Peter D et al. (2013) The CARD plays a critical role in ASC foci formation and inflammasome signalling. Biochem J 449:613-21
Mace, Peter D; Wallez, Yann; Egger, Michael F et al. (2013) Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nat Commun 4:1681
Pop, Cristina; Oberst, Andrew; Drag, Marcin et al. (2011) FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 433:447-457
González-López, Marcos; Welsh, Kate; Finlay, Darren et al. (2011) Design, synthesis and evaluation of monovalent Smac mimetics that bind to the BIR2 domain of the anti-apoptotic protein XIAP. Bioorg Med Chem Lett 21:4332-6

Showing the most recent 10 out of 16 publications