Liver pathology in alcoholic liver disease (ALD), non-alcoholic steatohepatitis (NASH) and forms of toxicant-associated steatohepatitis (TASH) is indistinguishable. ALD pathogenesis may be related to generation of toxic acetaldehyde (AcAld), whereas NASH and TASH are associated with generation of malondialdehyde (MDA), 4-hydroxynonenal (HNE), chloracetaldehyde (ClAcAld) and others by lipid peroxidation and/or toxicant metabolism. With the major exceptions of oxygen and short chain fatty acids, all mitochondrial metabolites cross mitochondrial outer membranes (MOM) via open voltage dependent anion channels (VDAC). The central hypothesis of this project is that ethanol and aldehydes close VDAC, decrease permeability of MOM and suppress normal mitochondrial function. Such VDAC closure allows the selective and more rapid mitochondrial oxidation of toxic aldehydes, which permeate mitochondria freely. Although VDAC closure is adaptive in promoting aldehyde detoxification, VDAC closure may be maladaptive in promoting steatosis and lipotoxicity. Accordingly, we propose to: 1) Characterize the effects of ethanol and aldehydes on ureagenesis in cultured hepatocytes, since ureagenesis is a major energy-consuming process that is dependent on exchange of metabolites across mitochondrial membranes. We will characterize the effects of ethanol, AcAld, MDA, HNE, ClAcAld and other aldehydes on ureagenic respiration and outer membrane permeability with the expectation that exogenous aldehydes and AcAld formed by ethanol metabolism will cause dose-dependent inhibition of ureagenesis and a decrease of MOM permeability to low molecular weight (? 3 kDa) solutes. Follow-on experiments identify kinase pathways mediating VDAC closure. 2) Determine the contributions of the three individual VDAC isoforms to suppression of ureagenesis in hepatocytes by ethanol and aldehydes using phosphorothioate siRNA single and double knockout/knockdowns of the VDAC isoforms. 3) Evaluate the role of aldehydes, kinases and VDAC in steatosis and lipotoxicity in vitro and in vivo. In preliminary experiments, aldehyde promoted steatosis dependent on c-Jun N-terminal kinase (JNK) after incubation of hepatocytes with Intralipid and sensitized to tumor necrosis factor-? (TNF?)-dependent apoptosis. We will evaluate mechanisms underlying this cell killing and the role of specific VDAC isoforms in promoting both steatosis and cell death. ALD and NASH are widely prevalent diseases in the U.S. for which therapy is largely ineffective. Lack of effective therapy reflects our ignorance of the underlying etiologies. In particular, the basis for the identical histopathology of ALD, NASH and TASH is unknown. Aldehyde-dependent VDAC closure provides a shared mechanism for the underlying pathophysiology of these diseases, which will likely lead to better strategies for treatment and prevention.

Public Health Relevance

Alcoholic liver disease (ALD), non-alcoholic steatohepatitis (NASH) and toxiciant-associated steatohepatitis (TASH) are widely prevalent or underreported liver diseases in the U.S. that have identical histopathology, poorly understood pathophysiology and, consequently, largely ineffective therapies. This project will examine the novel hypothesis that aldehyde generation common to these diseases causes closure of voltage dependent anion channels (VDAC) in mitochondria, an event that on the one hand is adaptive in promoting mitochondrial metabolism and detoxification of freely permeant aldehydes but on the other hand is maladaptive in pre-disposing to lipotoxicity and cell death. An understanding of the shared mechanisms underlying ALD, NASH and TASH will lead to better strategies for treatment and prevention.

Agency
National Institute of Health (NIH)
Institute
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Type
Research Project (R01)
Project #
5R01AA021191-04
Application #
9302602
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Orosz, Andras
Project Start
2014-09-15
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
4
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29403
Ramshesh, Venkat K; Lemasters, John J (2018) Imaging of Mitochondrial pH Using SNARF-1. Methods Mol Biol 1782:351-356
Zhong, Zhi; Lemasters, John J (2018) A Unifying Hypothesis Linking Hepatic Adaptations for Ethanol Metabolism to the Proinflammatory and Profibrotic Events of Alcoholic Liver Disease. Alcohol Clin Exp Res 42:2072-2089
DeHart, David N; Lemasters, John J; Maldonado, Eduardo N (2018) Erastin-Like Anti-Warburg Agents Prevent Mitochondrial Depolarization Induced by Free Tubulin and Decrease Lactate Formation in Cancer Cells. SLAS Discov 23:23-33
DeHart, David N; Fang, Diana; Heslop, Kareem et al. (2018) Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol 148:155-162
Teplova, Vera V; Kruglov, Alexey G; Kovalyov, Leonid I et al. (2017) Glutamate contributes to alcohol hepatotoxicity by enhancing oxidative stress in mitochondria. J Bioenerg Biomembr 49:253-264
Baburina, Yulia; Odinokova, Irina; Azarashvili, Tamara et al. (2017) 2',3'-Cyclic nucleotide 3'-phosphodiesterase as a messenger of protection of the mitochondrial function during melatonin treatment in aging. Biochim Biophys Acta Biomembr 1859:94-103
Lemasters, John J (2017) Evolution of Voltage-Dependent Anion Channel Function: From Molecular Sieve to Governator to Actuator of Ferroptosis. Front Oncol 7:303
Lemasters, John J; Ramshesh, Venkat K; Lovelace, Gregory L et al. (2017) Compartmentation of Mitochondrial and Oxidative Metabolism in Growing Hair Follicles: A Ring of Fire. J Invest Dermatol 137:1434-1444
Hu, Jiangting; Kholmukhamedov, Andaleb; Lindsey, Christopher C et al. (2016) Translocation of iron from lysosomes to mitochondria during acetaminophen-induced hepatocellular injury: Protection by starch-desferal and minocycline. Free Radic Biol Med 97:418-426
Hu, Jiangting; Ramshesh, Venkat K; McGill, Mitchell R et al. (2016) Low Dose Acetaminophen Induces Reversible Mitochondrial Dysfunction Associated with Transient c-Jun N-Terminal Kinase Activation in Mouse Liver. Toxicol Sci 150:204-15

Showing the most recent 10 out of 20 publications