The mechanisms for neuronal degeneration in adult-onset central nervous system (CNS) diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), are not understood. Recent studies suggest that neurodegeneration in AD and ALS is apoptosis, occurring by programmed cell death (PCD). The investigator has developed an animal model to study neuronal apoptosis. Occipital cortex ablation in adult rat and mice, a model of axotomy and target deprivation, causes progressive retrograde neuronal degeneration in thalamus that is structurally apoptosis. This apoptosis is associated with accumulation of active mitochondria within the neuronal cell body and oxidative damage to DNA. The investigator proposes to evaluate the mechanisms for neuronal apoptosis in vivo. The investigator will test the hypothesis that apoptosis in neurons is signaled by subcellular translocation of Bcl-2 and Bax and release of cytochrome C from mitochondria, which correspond temporally with activation of caspases and DNA fragmentation factors. The participation Bcl-2 and Bax to the mechanisms for neuronal apoptosis will be determined by evaluating whether neuronal loss is reduced in lesioned transgenic mice overexpressing Bcl-2 and in mice deficient in Bax. The participation of mitochondrial permeability transition and cytochrome C release will be determined by post-injury treatment with the permeability transition blocker cyclosporin A. In addition, the investigator proposes that a signal for PCD in these neurons is oxidative stress. The investigator will test the hypothesis that retrograde neuronal death after axotomy is nuclear DNA damage-induced, p53-dependent apoptosis. The investigator will evaluate whether dying neurons sustain oxidative damage to DNA and proteins during the transition between chromatolysis and early apoptosis. The participation of oxidative stress as a mechanism for the induction of neuronal apoptosis in vivo after axotomy/target deprivation will be further examined by determining whether oxidative injury and apoptosis are attenuated in transgenic mice that are deficient in neuronal or inducible nitric oxide synthase and in mice that overexpress human wild-type superoxide dismutase 1. The dependence of this neuronal apoptosis on p53 will be evaluated in lesioned p53-deficient mice. The investigator will then use antioxidant therapies (Trolox and uric acid) to prevent or delay neuronal apoptosis. These studies will identify possible molecular mechanisms of neuronal apoptosis in vivo and could lead to the design of new therapeutic neuroprotection experiments critical for the future treatment of AD and ALS.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG016282-03
Application #
6509767
Study Section
Special Emphasis Panel (ZRG1-MDCN-2 (01))
Program Officer
Wise, Bradley C
Project Start
2000-03-01
Project End
2004-02-28
Budget Start
2002-03-01
Budget End
2003-02-28
Support Year
3
Fiscal Year
2002
Total Cost
$268,923
Indirect Cost
Name
Johns Hopkins University
Department
Pathology
Type
Schools of Medicine
DUNS #
045911138
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Martin, Lee J; Wong, Margaret (2017) Enforced DNA repair enzymes rescue neurons from apoptosis induced by target deprivation and axotomy in mouse models of neurodegeneration. Mech Ageing Dev 161:149-162
Martin, Lee J; Semenkow, Samantha; Hanaford, Allison et al. (2014) Mitochondrial permeability transition pore regulates Parkinson's disease development in mutant ?-synuclein transgenic mice. Neurobiol Aging 35:1132-52
Martin, Lee J (2012) Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107:355-415
Martin, Lee J; Chang, Qing (2012) Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 45:30-42
Gertz, Barry; Wong, Margaret; Martin, Lee J (2012) Nuclear localization of human SOD1 and mutant SOD1-specific disruption of survival motor neuron protein complex in transgenic amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol 71:162-77
Chavez-Valdez, R; Martin, L J; Flock, D L et al. (2012) Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 219:192-203
Martin, Lee J (2011) An approach to experimental synaptic pathology using green fluorescent protein-transgenic mice and gene knockout mice to show mitochondrial permeability transition pore-driven excitotoxicity in interneurons and motoneurons. Toxicol Pathol 39:220-33
Martin, Lee J (2011) Mitochondrial pathobiology in ALS. J Bioenerg Biomembr 43:569-79
Martin, Lee J; Adams, Neal A; Pan, Yan et al. (2011) The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci 31:359-70
Northington, Frances J; Chavez-Valdez, Raul; Martin, Lee J (2011) Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 69:743-58

Showing the most recent 10 out of 60 publications