The ability to perform tasks involving working memory, attention and speeded processing becomes increasingly compromised with advancing age, yet identification of the neural substrates responsible for these age related functional declines has been elusive. While structural magnetic resonance imaging (MRI) studies reveal ag-related decreases in cortical gray but not white matter volume, spectroscopic studies suggest that, despite reduced volume, gray matter integrity is not compromised in the elderly and functional imaging studies show that older subjects recruit more brain regions than their younger counterparts to execute a given task. In addition, neuropathological studies note substantial age-related changes in the microstructure of white matter (e.g., demyelination, microtubule deterioration, and axonal deletion) but not loss of neuronal number, suggesting a role for white matter as a substrate of age-related cognitive decline. With advancing age, the cortical nodes of a neural network may remain intact, but white matter interconnections of the brain system required for performance may deteriorate. Conventional MRI is not capable of detecting the age-dependent microstructural change in brain white matter observed neuropathologically. Diffusion tensor imaging (DTI) offers the unique opportunity to identify in vivo the orientation of white matter tracts and bundles and to quantify the degree of their intravoxel coherence, an index of microstructural integrity. Application of non-collinear diffusion gradients at image acquisition permits the direction of water diffusion to be determine din three dimensions and the examination of white matter tracts as they course through the brain, the directions of which are known by histology but until now could only be inferred in vivo from anatomical position on MRI. Water diffusion in healthy white matter bundles is highly anisotropic and becomes isotropic with advancing age and diseases marked by demyelination, microtubule deterioration and axonal deletion. To examine age dependent microstructural integrity of white matter brain systems and associated cognitive compromise, the investigators will combine DTI, structural MRI, and neuropsychological and electrophysiological paradigms to examine younger (age 20 to 45 years) and older (age 60 to 85 years) healthy men and women. Characterization of patterns of white matter microstructure deterioration in normal aging should lead to an understanding of the pathophysiology of normal cognitive decline and is a requisite context for interpreting such changes in neurodegenerative disease of the aged.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
1R01AG017919-01
Application #
6088033
Study Section
Special Emphasis Panel (ZRG1-BBBP-4 (01))
Program Officer
Wagster, Molly V
Project Start
2000-06-15
Project End
2005-05-31
Budget Start
2000-06-15
Budget End
2001-05-31
Support Year
1
Fiscal Year
2000
Total Cost
$410,271
Indirect Cost
Name
Stanford University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
800771545
City
Stanford
State
CA
Country
United States
Zip Code
94305
Jung, Young-Chul; Schulte, Tilman; Müller-Oehring, Eva M et al. (2014) Synchrony of anterior cingulate cortex and insular-striatal activation predicts ambiguity aversion in individuals with low impulsivity. Cereb Cortex 24:1397-408
Müller-Oehring, Eva M; Schulte, Tilman; Rohlfing, Torsten et al. (2013) Visual search and the aging brain: discerning the effects of age-related brain volume shrinkage on alertness, feature binding, and attentional control. Neuropsychology 27:48-59
Pfefferbaum, Adolf; Rohlfing, Torsten; Rosenbloom, Margaret J et al. (2013) Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI. Neuroimage 65:176-93
Zahr, Natalie M; Mayer, Dirk; Rohlfing, Torsten et al. (2013) In vivo glutamate measured with magnetic resonance spectroscopy: behavioral correlates in aging. Neurobiol Aging 34:1265-76
Schulte, Tilman; Maddah, Mahnaz; Müller-Oehring, Eva M et al. (2013) Fiber tract-driven topographical mapping (FTTM) reveals microstructural relevance for interhemispheric visuomotor function in the aging brain. Neuroimage 77:195-206
Sullivan, Edith V (2012) War-related PTSD, blast injury, and anosognosia. Neuropsychol Rev 22:1-2
Pfefferbaum, Adolf; Rohlfing, Torsten; Rosenbloom, Margaret J et al. (2012) Combining atlas-based parcellation of regional brain data acquired across scanners at 1.5 T and 3.0 T field strengths. Neuroimage 60:940-51
Sullivan, Edith V; Pfefferbaum, Adolf; Rohlfing, Torsten et al. (2011) Developmental change in regional brain structure over 7 months in early adolescence: comparison of approaches for longitudinal atlas-based parcellation. Neuroimage 57:214-24
Pfefferbaum, Adolf; Chanraud, Sandra; Pitel, Anne-Lise et al. (2011) Cerebral blood flow in posterior cortical nodes of the default mode network decreases with task engagement but remains higher than in most brain regions. Cereb Cortex 21:233-44
Schulte, Tilman; Muller-Oehring, Eva M; Chanraud, Sandra et al. (2011) Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiol Aging 32:2075-90

Showing the most recent 10 out of 58 publications