The National Institutes on Aging and Reagan Institute consensus criteria for the diagnosis of Alzheimer's disease includes a clinical evaluation of progressive dementia and a post-mortem observation of both amyloid plaques and neurofibrillary tangles in the brains of AD patients. Age of the patient is the largest risk for the presence of AD followed by the presence of one or more epsilon-4 alleles of the apolipoprotein-E gene (APOE4) in about 45 percent of all AD patients. The presence of APOE4 is also associated with an increase in the numbers of neurofibrillary tangles and amyloid plaques compared to those AD patients that lack APOE4 alleles. These data imply that increased numbers of plaques and tangles are associated with a gain of Alzheimer's dementia. An animal model that displays progressive dementia, amyloid plaques and neurofibrillary tangles is a critical step forward toward developing a safe and effective drug for the treatment of Alzheimer's disease. Based on reported studies of AD patients, an animal model should also display increased numbers of neurofibrillary tangles and amyloid plaques when APOE4 gene products are present. We propose to make a mouse model of Alzheimer's disease to meet the National Institute of Aging-Reagan Institute criteria for Alzheimer's disease. This triple transgenic mouse (APP + TAU + APOE) is designed to display both neurofibrilary tangles and amyloid plaques in their brains. To be an accurate model of human AD, we hypothesize that the numbers of neurofibrillary tangles and amyloid plaques should increase in the presence of human APOE4 gene products compared to human APOE3 gene products. Although work on plaque-only or tangle-only mice needs to continue, if we are really going to develop a mouse model of Alzheimer's disease, we must have progressive dementia, plaques, and tangles. Such a model would facilitate exploration of the basic mechanisms that cause neurodegeneration and dementia, in the 'presence of plaques, tangles and apoE proteins, and thus, greatly facilitate the finding of a safe and effective drug to block Alzheimer's dementia.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BDCN-3 (01))
Program Officer
Snyder, Stephen D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Vitek, Michael P; Brown, Candice M; Colton, Carol A (2009) APOE genotype-specific differences in the innate immune response. Neurobiol Aging 30:1350-60
Wilcock, Donna M; Gharkholonarehe, Nastaran; Van Nostrand, William E et al. (2009) Amyloid reduction by amyloid-beta vaccination also reduces mouse tau pathology and protects from neuron loss in two mouse models of Alzheimer's disease. J Neurosci 29:7957-65
Wilcock, D M; Vitek, M P; Colton, C A (2009) Vascular amyloid alters astrocytic water and potassium channels in mouse models and humans with Alzheimer's disease. Neuroscience 159:1055-69
Brown, Candice M; Choi, Emily; Xu, Qing et al. (2008) The APOE4 genotype alters the response of microglia and macrophages to 17beta-estradiol. Neurobiol Aging 29:1783-94
Wilcock, Donna M; Lewis, Matthew R; Van Nostrand, William E et al. (2008) Progression of amyloid pathology to Alzheimer's disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci 28:1537-45
Xu, Feng; Vitek, Michael P; Colton, Carol A et al. (2008) Human apolipoprotein E redistributes fibrillar amyloid deposition in Tg-SwDI mice. J Neurosci 28:5312-20
Colton, Carol A; Wilcock, Donna M; Wink, David A et al. (2008) The effects of NOS2 gene deletion on mice expressing mutated human AbetaPP. J Alzheimers Dis 15:571-87
Brown, Candice M; Xu, Qing; Okhubo, Nobutaka et al. (2007) Androgen-mediated immune function is altered by the apolipoprotein E gene. Endocrinology 148:3383-90
Dawson, Hana N; Cantillana, Viviana; Chen, Liling et al. (2007) The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J Neurosci 27:9155-68
Shvartsman, A L; Sarantseva, S V; Tatishcheva, Iu A et al. (2006) [Expression of presenilin 1 on the cell surface in motile polarized cells] Biofizika 51:839-43

Showing the most recent 10 out of 16 publications