EXCEED THE SPACE PROVIDED. Methionine sulfoxide (Met(O)) reduction is an essential metabolic pathway that provides protectionagainst oxidative stress and regulates protein function. Met(O) are formed in the presence of reactive oxygen species and are reduced back to methionine by peptide Met(O) reductases. One Met(O) reductase (MsrA) has been known for decades and has recently been shownto regulate lifespan in animals. MsrA, however, is onlyspecific for methionine-S-sulfoxides. The P.I. identified and characterized a second mammalian Met(O) reductase (SelR1) that is specific for methionine-R-sulfoxides. SelR1 is a selenocysteine-containJngprotein and dietary selenium affects its expression.This raises a possibilitythat SelR1 may also be involvedin delayingthe aging process through reductionin levels of Met(O) and that supplementation of diet with selenium may provide means of extending the lifespan of certain segments of the human population. To directlycharacterize the role of SelR1 in aging, the pathway of Met(O) reduction in mammals will be analyzed with an emphasis on the function of selenoproteinSelR1 and characterization of the lifespan of animals that are either deficient or enriched in SelR1. A combination of biochemical and cell biology approaches and mouse model systems will be used to address the following specific questions (specific aims): 1) What are the properties and reaction mechanisms of SelR1 and its homologs? Three SelR isozymes have been identified in mammals. Wild-type and mutant forms of these proteins will be characterized and their catalytic activities, substrate specificity, metal-binding properties and the ability to complement yeast strains determined; 2) What are the tissue expression patterns, cellular locations and regulation of expression of Met(O) reductases? Hypotheses will be tested that SelR isozymes are located in different cellular compartments and that a single MsrA gene gives rise to two forms of the enzyme. In addition, efficiency of selenocysteine insertion and regulation of SelR1 expression by dietary selenium will be determined; 3) What is the role of SelR in aging? SelR1 knockout mice will generated and the hypothesis tested that these animals are characterized by a reduced lifespan. Transgenic mice overexpressing SelR1 will also be generated to determine whether these animals have increased lifespan. PERFORMANCE SITE ========================================Section End===========================================
Lee, Byung Cheon; Lee, Hae Min; Kim, Sorah et al. (2018) Expression of the methionine sulfoxide reductase lost during evolution extends Drosophila lifespan in a methionine-dependent manner. Sci Rep 8:1010 |
Zhao, Yang; Tyshkovskiy, Alexander; Muñoz-Espín, Daniel et al. (2018) Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proc Natl Acad Sci U S A 115:1801-1806 |
Meer, Margarita V; Podolskiy, Dmitriy I; Tyshkovskiy, Alexander et al. (2018) A whole lifespan mouse multi-tissue DNA methylation clock. Elife 7: |
Ma, Siming; Avanesov, Andrei S; Porter, Emily et al. (2018) Comparative transcriptomics across 14 Drosophila species reveals signatures of longevity. Aging Cell :e12740 |
Tarrago, Lionel; Oheix, Emmanuel; Péterfi, Zalán et al. (2018) Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Methods Mol Biol 1661:285-299 |
Sziráki, András; Tyshkovskiy, Alexander; Gladyshev, Vadim N (2018) Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell 17:e12738 |
Kim, Ki Young; Kwak, Geun-Hee; Singh, Mahendra Pratap et al. (2017) Selenoprotein MsrB1 deficiency exacerbates acetaminophen-induced hepatotoxicity via increased oxidative damage. Arch Biochem Biophys 634:69-75 |
Golubev, Alexey; Hanson, Andrew D; Gladyshev, Vadim N (2017) Non-enzymatic molecular damage as a prototypic driver of aging. J Biol Chem 292:6029-6038 |
Manta, Bruno; Gladyshev, Vadim N (2017) Regulated methionine oxidation by monooxygenases. Free Radic Biol Med 109:141-155 |
Ke, Zhonghe; Mallik, Pramit; Johnson, Adam B et al. (2017) Translation fidelity coevolves with longevity. Aging Cell 16:988-993 |
Showing the most recent 10 out of 82 publications