: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the U.S., this disease affects approximately 3-4 million persons, costing the U.S. economy more than $50 billion per year. The cause(s) of this debilitating neurodegenerative disease is/are presently unknown. However, a large body of evidence indicates that at least some, if not all, AD cases are due to genetic factors. Genetic analysis of families with multiple cases of early-onset AD has shown that 3 autosomal-dominant genes are responsible for at least some occurrences of the disease. In these families, offspring of affected persons are at least at 50% risk of inheriting a Familial AD (FAD) gene and developing AD. Late-Onset FAD (LOFAD) appears to involve other genes, and is a more complex disease. Using linkage analysis, other sophisticated statistical genetic methods and positional cloning approaches, the long-range goal of this project is to identify the underlying causes of AD by identifying the genes responsible for genetic forms of late-onset AD. Using genetic-linkage analysis, based on Monte Carlo Markov Chain methods, we identified a quantitative trait locus on chromosome-19p 13.2 that affects AD risk. This locus was identified as a quantitative trait that affects age-of-onset. The 19p locus targeted by this project is distinct from ApoE, another LOFAD gene located at 19q13. To identify this new LOFAD gene by positional cloning, the following steps will be performed. First, a physical, sequence, and gene-map of 19p13.2 spanning the region, indicated by linkage analysis, will be generated. Second, genes in this region will be screened for polymorphic sites by database analysis and DNA sequence analysis. Third, polymorphisms spanning the region will be used to test for linkage disequilibrium in the region. Polymorphic sites tested will include short tandem repeat polymorphic sites and single nucleotide polymorphism (SNP) sites. Fourth, SNP's in genes in the region will be tested as pathogenic sites in multiple familial and case-control samples to identify the true pathogenic allele. Fifth, when the gene and pathogenic alleles are found, functional assays will be devised to determine the mechanism of pathogenesis leading to AD. Identification of additional LOFAD genes should greatly enhance our understanding of AD, and potentially lead to new types of therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
1R01AG021544-01
Application #
6474401
Study Section
Special Emphasis Panel (ZNS1-SRB-S (01))
Program Officer
Miller, Marilyn
Project Start
2002-08-15
Project End
2007-07-31
Budget Start
2002-08-15
Budget End
2003-07-31
Support Year
1
Fiscal Year
2002
Total Cost
$315,000
Indirect Cost
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
135646524
City
Seattle
State
WA
Country
United States
Zip Code
98195
Ryman, Davis C; Acosta-Baena, Natalia; Aisen, Paul S et al. (2014) Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83:253-60
Kay, D M; Stevens, C F; Hamza, T H et al. (2010) A comprehensive analysis of deletions, multiplications, and copy number variations in PARK2. Neurology 75:1189-94
Yu, Chang-En; Seltman, Howard; Peskind, Elaine R et al. (2007) Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer's disease: patterns of linkage disequilibrium and disease/marker association. Genomics 89:655-65
Sieh, Weiva; Yu, Chang-En; Bird, Thomas D et al. (2007) Accounting for linkage disequilibrium among markers in linkage analysis: impact of haplotype frequency estimation and molecular haplotypes for a gene in a candidate region for Alzheimer's disease. Hum Hered 63:26-34
Wijsman, Ellen M; Daw, E Warwick; Yu, Xuesong et al. (2005) APOE and other loci affect age-at-onset in Alzheimer's disease families with PS2 mutation. Am J Med Genet B Neuropsychiatr Genet 132B:14-20
Wijsman, Ellen M; Daw, E Warwick; Yu, Change-En et al. (2004) Evidence for a novel late-onset Alzheimer disease locus on chromosome 19p13.2. Am J Hum Genet 75:398-409
Yu, Chang-En; Devlin, Bernie; Galloway, Nichole et al. (2004) ADLAPH: A molecular haplotyping method based on allele-discriminating long-range PCR. Genomics 84:600-12