Alzheimer's Disease (AD) is the most common form of dementia that affects 5.3 million Americans. In a small percentage (>1%) of cases AD is inherited as an autosomal dominant trait (Familial AD), however the majority of cases are sporadic. A key neuropathological event in AD is the cerebral accumulation of A, a ~4kDa peptide derived by serial proteolysis of the amyloid precursor protein (APP) by - and ?-secretase. Beta-site APP-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as -secretase. Several studies have shown that BACE1 protein levels and-secretase activity are increased in AD brains. Thus, BACE1 elevation may be the first step in increasing A and triggering AD pathology, at least in the sporadic cases. Our studies have elucidated a novel post-translational mechanism of regulation of BACE1 mediated by the BACE1-interacting molecule, GGA3 (Golgi-localized ?-ear-containing ARF binding protein 3). We have determined that GGA3 depletion stabilizes BACE1 and increases -secretase activity. We also found that levels of GGA3 are decreased in post-mortem AD brains and are inversely correlated with BACE1 levels. We have shown that BACE1 is degraded via the lysosomal pathway and demonstrated that GGA3 regulates the delivery of BACE1 to the lysosomes. The BACE1-C-terminal fragment (CTF) contains a specific di-leucine (DXXLL) sorting signal that has been shown to bind the VHS domain of the three members of the GGA family of proteins, GGA1, 2, and 3. We have found that, unexpectedly, direct binding of GGA3 VHS domain to the BACE1 di-leucine motif is not necessary for this regulation. Instead, GGA3 interaction with ubiquitin is essential for regulating BACE1 levels. Accordingly, we have found that BACE1 is mainly mono- and K63-linked polyubiquitinated at lysine 501. The central hypothesis of this proposal is that the impairment of BACE1 degradation is the underlying mechanism of BACE1 elevation in the brains of subjects affected by AD. The overarching goal of this proposal is to determine the extent to which GGA- and ubiquitin-mediated regulation of BACE1 represent a potential target for the treatment of AD. Thus, we propose to specifically address the following aims: 1) To determine the extent to which BACE1 ubiquitination regulates BACE1 trafficking, activity and degradation via the proteasomal or lysosomal pathway; 2) To determine the extent to which over-expression of GGA3 reduces levels of BACE1 and A in a ubiquitin-dependent fashion in vivo; 3) To determine the extent to which GGA1, another member of the GGA family of proteins, regulates levels of BACE1 and A independently and in association with GGA3 in vitro and in vivo.

Public Health Relevance

BACE1 is a primary drug target for AD therapy. However, after a decade since the discovery of -secretase the identification of effective BACE1 inhibitors that are active in the CNS has been very difficult. An alternative approach to BACE1 small-molecule inhibitors is the indirect inhibition of BACE1 through the modulation of regulatory mechanisms that control BACE1 levels or BACE1 trafficking to acidic compartments where it is mostly active. Our studies have elucidated a novel post-translational mechanism of regulation of BACE1 mediated by GGA3 and ubiquitin. Our studies are expected to determine the extent to which impaired degradation of BACE1 is the underlying mechanism of BACE1 elevation in AD and to determine the extent to which GGA- and ubiquitin-mediated regulation of BACE1 is a potential target for the treatment of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG025952-10
Application #
8850755
Study Section
Special Emphasis Panel (ZRG1-CDIN-T (02))
Program Officer
Yang, Austin Jyan-Yu
Project Start
2005-04-01
Project End
2016-05-31
Budget Start
2015-06-15
Budget End
2016-05-31
Support Year
10
Fiscal Year
2015
Total Cost
$344,107
Indirect Cost
$135,557
Name
Tufts University
Department
Neurosciences
Type
Schools of Medicine
DUNS #
039318308
City
Boston
State
MA
Country
United States
Zip Code
02111
Kim, WonHee; Ma, Liang; Lomoio, Selene et al. (2018) BACE1 elevation engendered by GGA3 deletion increases ?-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 13:6
Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina (2016) The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation. J Biol Chem 291:15753-66
Walker, Kendall R; Modgil, Amit; Albrecht, David et al. (2016) Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission. PLoS One 11:e0155799
Kang, Eugene L; Biscaro, Barbara; Piazza, Fabrizio et al. (2012) BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus. J Biol Chem 287:42867-80
Tesco, Giuseppina (2012) Autophagy: a common road to perdition in acute brain injuries and Alzheimer's disease. J Neurochem 120:475-6
Kittelberger, Kara A; Piazza, Fabrizio; Tesco, Giuseppina et al. (2012) Natural amyloid-? oligomers acutely impair the formation of a contextual fear memory in mice. PLoS One 7:e29940
Walker, Kendall R; Kang, Eugene L; Whalen, Michael J et al. (2012) Depletion of GGA1 and GGA3 mediates postinjury elevation of BACE1. J Neurosci 32:10423-37
Biscaro, Barbara; Lindvall, Olle; Tesco, Giuseppina et al. (2012) Inhibition of microglial activation protects hippocampal neurogenesis and improves cognitive deficits in a transgenic mouse model for Alzheimer's disease. Neurodegener Dis 9:187-98
Kang, Eugene L; Cameron, Andrew N; Piazza, Fabrizio et al. (2010) Ubiquitin regulates GGA3-mediated degradation of BACE1. J Biol Chem 285:24108-19
Tesco, Giuseppina; Koh, Young Ho; Kang, Eugene L et al. (2007) Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 54:721-37