Advancing age is often accompanied by cognitive impairments characterized by substantial deficits in learning and memory. These deficits adversely effect day to day living, reduce the quality of life and impose a financial and social burden on the affected and their families. The exact neuronal mechanism that gives rise to these age-related impairments remains unknown. However, data from experiments using a variety of model systems, suggests that dysregulation of neuronal Ca2+ homeostasis is a significant contributing factor to these cognitive impairments. Specifically, there appears to be an age-related increase in intracellular calcium [Ca2+]i in neurons observed during neuronal activity. This increase in activity-driven accumulation of [Ca2+]i adversely impacts neuronal excitability and long-term potentiation (LTP), processes that have both been implicated in learning &memory. It has been suggested that the increase in [Ca2+]i is the result of an age-related increase in expression of L-type voltage-gated calcium channels (L-VGCCs). This has led to the hypothesis that an age-related increase in L-VGCCs expression leads to a decrease in neuronal excitability which in turn reduces LTP. The resulting decrease in LTP disrupts the ability of the hippocampus to encode new information. In this proposal we will use a multidisciplinary approach to test key elements of this hypothesis.
In Specific Aim I we will use L-VGCC knockout (KO) mice to determine whether L-VGCCs are necessary for the age-related decrease in neuronal excitability and LTP.
In Specific Aim II, using organotypic hippocampal slice cultures and epitope-tagged recombinant L-VGCC pore forming subunits, we will determine whether over-expression of L-VGCCs is sufficient to produce changes in neuronal excitability and LTP similar to that observed during normal aging. Finally, in Specific Aim III we will utilize L-VGCC KO mice to determine to what extent L-VGCCs contribute to the learning &memory deficits normally observed in aged mice. Results from these studies will provide us with valuable insights into the neurobiology of aging and will aid in the identification of targets for the therapeutic intervention, designed to ameliorate cognitive impairments that arise from alterations in age-related calcium homeostasis.
Showing the most recent 10 out of 15 publications