This proposal is to conduct studies aimed at furthering our understanding of the neurocognitive basis of age-related working memory (WM) decline. We propose to implement new neuroimaging and behavioral methods that take account of potential cognitive and physiological factors that may lead to spurious results. fMRI, a neuroimaging tool that relies on hemodynamics of the cerebral vasculature to localize neural activity, has been used to reveal the neural mechanisms of age-related cognitive changes. On the basis of fMRI data, theories about how brain-aging leads to age differences in WM, a fundamental cognitive process that underlies many higher cognitive functions, have been formulated. At the same time, however, other data have indicated that mechanisms of age-related cerebrovascular change could lead to spurious results of age-related fMRI signal differences. The current proposal is to investigate the neural mechanisms of age-related WM change with fMRI methods that take these changes into account. In 4 sets of studies, I will first test a new method for measuring age-related fMRI signal change by accounting for vasomotor (i.e., flow changes during neural activity) and transit (i.e., arrival time of red blood cells) components of fMRI signal. Evidence bearing on this hypothesis would be important because, to date, no methods have been proposed to account for these age-related blood-flow differences. Second, I will implement event-related fMRI procedures to test the hypothesis that dorsal prefrontal cortex (RFC) regions (that may underlie WM executive functions) are disproportionately age affected, compared to other, more ventral RFC regions (that may underlie WM storage processes). These studies uniquely isolate executive WM processes from storage processes while controlling for possible age differences in the strategies subjects adopt to optimize performance. The third and fourth studies examine the neural basis of relationships between age differences in processing speed and WM. These studies will combine refined estimates of neural activity, advanced fMRI, behavioral and statistical methods to study the physiological, neural and cognitive origins of age-related cognitive change. They will inform knowledge of the neural architecture of memory and its decline, the most common and debilitating symptom of aging. The results will also inform development of therapeutic techniques to ameliorate age-related cognitive disorders such as Alzheimer's disease.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Cognitive Neuroscience Study Section (COG)
Program Officer
Wagster, Molly V
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas-Dallas
United States
Zip Code
Turner, Monroe P; Hubbard, Nicholas A; Sivakolundu, Dinesh K et al. (2018) Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage :
Turner, Monroe P; Hubbard, Nicholas A; Himes, Lyndahl M et al. (2016) Cognitive Slowing in Gulf War Illness Predicts Executive Network Hyperconnectivity: Study in a Population-Representative Sample. Neuroimage Clin 12:535-541
Rypma, Bart; Fischer, HÃ¥kan; Rieckmann, Anna et al. (2015) Dopamine D1 Binding Potential Predicts Fusiform BOLD Activity during Face-Recognition Performance. J Neurosci 35:14702-7
Di, Xin; Rypma, Bart; Biswal, Bharat B (2014) Correspondence of executive function related functional and anatomical alterations in aging brain. Prog Neuropsychopharmacol Biol Psychiatry 48:41-50
Hubbard, Nicholas A; Hutchison, Joanna L; Motes, Michael A et al. (2014) Central Executive Dysfunction and Deferred Prefrontal Processing in Veterans with Gulf War Illness. Clin Psychol Sci 2:319-327
Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan et al. (2014) Variation of types of alcoholism: review and subtypes identified in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 48:36-40
Kannurpatti, Sridhar S; Motes, Michael A; Biswal, Bharat B et al. (2014) Assessment of unconstrained cerebrovascular reactivity marker for large age-range FMRI studies. PLoS One 9:e88751
Hutchison, Joanna L; Hubbard, Nicholas A; Brigante, Ryan M et al. (2014) The efficiency of fMRI region of interest analysis methods for detecting group differences. J Neurosci Methods 226:57-65
Bennett, Ilana J; Rypma, Bart (2013) Advances in functional neuroanatomy: a review of combined DTI and fMRI studies in healthy younger and older adults. Neurosci Biobehav Rev 37:1201-10
Hutchison, Joanna L; Lu, Hanzhang; Rypma, Bart (2013) Neural mechanisms of age-related slowing: the ?CBF/?CMRO2 ratio mediates age-differences in BOLD signal and human performance. Cereb Cortex 23:2337-46

Showing the most recent 10 out of 27 publications