Several genome-wide association studies (GWAS) for late-onset Alzheimer's disease (LOAD) have now been published. While all of these studies detected the association of APOE 54 with risk for LOAD only the two largest studies, with over 10,000 cases and controls provided genome-wide significant evidence for any novel loci. To develop larger datasets we and others have formed large collaborative groups, such as the Alzheimer's Disease Genetics Consortium (ADGC). We have also developed an innovative program using cerebrospinal fluid biomarker levels as endophenotypes for our genetic studies of LOAD. Our preliminary data demonstrate the power and novelty of this approach in identifying genes that alter biomarker levels and modify LOAD risk, age at onset or rate of disease progression. This endophenotype approach also has the advantage of pin-pointing specific biological hypotheses regarding the effects of associated variants that can be tested using simple cell culture assays. The goal of this proposal is to combine and analyze existing LOAD GWAS data, then use a novel approach that incorporates quantitative intermediate traits, re-sequencing, bioinformatics, expression and functional studies to facilitate the identification and characterization of genetic variants that modulate risk for LOAD, age at onset or rate of disease progression. To accomplish this we will 1) combine and analyze LOAD GWAS data, 2) use a novel method, the Genomic Information Network, to systematically incorporate biological information to prioritize single nucleotide polymorphisms (SNPs) for follow-up, 3) examine top SNPs from the LOAD GWAS for association with cerebrospinal fluid amyloid-beta and tau levels to establish specific hypotheses of mechanism, 4) use novel genetic and bioinformatic methods to identify putative causal variants from the replicated SNPs, 5) use re-sequencing to identify novel variants in the regions surrounding replicated SNPs, 6) examine the top hits for effects on gene expression. Finally, we will use information from these efforts to test specific amyloid-beta or tau related hypotheses for replicated SNPs in cell culture models. This proposal combines the unique resources and skills of our research team with the vast wealth of publicly available resources into a novel approach to the identification and characterization of genetic risk factors for LOAD.

Public Health Relevance

Alzheimer's disease is a very common neurodegenerative disease with no effective means of prevention or treatment. The goal of the present study is to identify genetic risk factors for Alzheimer's disease, which in the longer term may lead to novel drug targets and improved treatment/prevention of the disease. Alzheimer's disease is a very common neurodegenerative disease with no effective means of prevention or treatment. The goal of the present study is to identify genetic risk factors for Alzheimer's disease, which in the longer term may lead to novel drug targets and improved treatment/prevention of the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG035083-05
Application #
8717549
Study Section
Molecular Neurogenetics Study Section (MNG)
Program Officer
Miller, Marilyn
Project Start
2010-09-01
Project End
2015-05-31
Budget Start
2014-07-01
Budget End
2015-05-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Washington University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Cruchaga, Carlos; Del-Aguila, Jorge L; Saef, Benjamin et al. (2018) Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 14:205-214
Maxwell, Taylor J; Corcoran, Chris; Del-Aguila, Jorge L et al. (2018) Genome-wide association study for variants that modulate relationships between cerebrospinal fluid amyloid-beta 42, tau, and p-tau levels. Alzheimers Res Ther 10:86
Ibanez, Laura; Dube, Umber; Davis, Albert A et al. (2018) Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease. Front Neurosci 12:230
Deming, Yuetiva; Dumitrescu, Logan; Barnes, Lisa L et al. (2018) Sex-specific genetic predictors of Alzheimer's disease biomarkers. Acta Neuropathol 136:857-872
Li, Zeran; Del-Aguila, Jorge L; Dube, Umber et al. (2018) Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Med 10:43
Monsell, Sarah E; Mock, Charles; Fardo, David W et al. (2017) Genetic Comparison of Symptomatic and Asymptomatic Persons With Alzheimer Disease Neuropathology. Alzheimer Dis Assoc Disord 31:232-238
Ibanez, Laura; Dube, Umber; Budde, John et al. (2017) TMEM230 in Parkinson's disease. Neurobiol Aging 56:212.e1-212.e3
Haddick, Patrick C G; Larson, Jessica L; Rathore, Nisha et al. (2017) A Common Variant of IL-6R is Associated with Elevated IL-6 Pathway Activity in Alzheimer's Disease Brains. J Alzheimers Dis 56:1037-1054
Deming, Yuetiva; Li, Zeran; Kapoor, Manav et al. (2017) Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers. Acta Neuropathol 133:839-856
Ibanez, Laura; Dube, Umber; Saef, Benjamin et al. (2017) Parkinson disease polygenic risk score is associated with Parkinson disease status and age at onset but not with alpha-synuclein cerebrospinal fluid levels. BMC Neurol 17:198

Showing the most recent 10 out of 38 publications