Alzheimer's disease (AD) is the most severe neurodegenerative dementia for which there is currently no cure. Abundant deposition of amyloid beta (A?) plaques and the presence of neurofibrillary tangles of hyper-phosphorylated tau protein are the two CNS lesions that, concomitant with synaptic disruption and preponderant insulin resistance, hallmark the onset and progression of AD. Some individuals, however, remain cognitively intact despite the presence of substantial AD neuropathology. The existence of these unusual cases (which we termed Non-Demented with Alzheimer's Neuropathology, NDAN) reveals that there is a natural way for the human brain to resist the neurotoxic events that normally lead to cognitive demise in AD. It follows that understanding the molecular mechanisms involved in such resistance would reveal a very effective target for treatment of cognitive decline in AD. Achieving this knowledge is the overarching goal of our research. We present compelling preliminary results supporting the hypothesis that NDAN individuals remain cognitively intact because A? oligomers do not bind to, and therefore, do not disrupt post-synaptic elements owing to increased insulin sensitivity that impacts the make-up of the PSD proteome rendering A? oligomer docking unlikely. The goal of this application is to establish that, as compared to demented AD, cognitive integrity of NDAN cases is collectively marked by a) molecular evidence of synaptic integrity; b) absence of A? oligomers from post-synaptic elements; c) increased insulin sensitivity; d) unique PSD proteome signature. We will test this hypothesis by pursuing the following three specific aims: 1) To demonstrate the presence (or absence) of A? oligomers at synapses in the hippocampus and cortex of AD and NDAN brains as a function of synaptic welfare, insulin sensitivity and cognitive competence; 2) To determine the existence of a causal link between sustained insulin signaling and the ability of synapses to reject the disfunctional binding of A? oligomers; 3) To determine and contrast the protein make-up of the PSD in control, AD and NDAN cases and in wt mice treated with the insulin sensitizing drug PTZ. Results will characterize the NDAN human synapse which is capable of escaping disruptive targeting by A? oligomers and maintaining increased insulin sensitivity and establish a molecular signature underscoring a causal relationship between sustained insulin signaling and the ability of synapses to reject detrimental A? oligomer binding. This new knowledge is necessary to lay solid foundations for the identification of potential pharmacological targets for the development of new, effective treatments for AD. We propose a multidisciplinary approach that brings together a uniquely qualified team of experts in neuronal molecular signaling in AD (Taglialatela), CNS electron microscopy (Carlton), behavior in APP Tg mouse models (Dineley), proteomics (Wiktorowicz), AD histopathology (Woltjer) and AD clinical aspects (Quinn).

Public Health Relevance

The proposed research is relevant to public health because the discovery of mechanisms allowing resistance to A? toxicity and associated cognitive dysfunction is ultimately expected to drive the development of an effective therapy for AD, thus improving these patients' health while driving down the societal cost for their care, which is expected to increase to unbearable proportions by the year 2050. Thus, the proposed research is relevant to the part of NIH's mission concerned with fostering creative discoveries and their application to advance the Nation's capacity to protect and improve health.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
4R01AG042890-04
Application #
9111760
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Petanceska, Suzana
Project Start
2013-09-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Neurosciences
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Krishnan, Balaji; Kayed, Rakez; Taglialatela, Giulio (2018) Elevated phospholipase D isoform 1 in Alzheimer's disease patients' hippocampus: Relevance to synaptic dysfunction and memory deficits. Alzheimers Dement (N Y) 4:89-102
Zolochevska, Olga; Bjorklund, Nicole; Woltjer, Randall et al. (2018) Postsynaptic Proteome of Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 65:659-682
Hsu, Wei-Chun J; Wildburger, Norelle C; Haidacher, Sigmund J et al. (2017) PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer's disease. Exp Neurol 295:1-17
Briley, David; Ghirardi, Valeria; Woltjer, Randy et al. (2016) Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep 6:27812
Zolochevska, Olga; Taglialatela, Giulio (2016) Non-Demented Individuals with Alzheimer's Disease Neuropathology: Resistance to Cognitive Decline May Reveal New Treatment Strategies. Curr Pharm Des 22:4063-8
Franklin, Whitney; Taglialatela, Giulio (2016) A method to determine insulin responsiveness in synaptosomes isolated from frozen brain tissue. J Neurosci Methods 261:128-34
Sallam, Hanaa S; Tumurbaatar, Batbayar; Zhang, Wen-Ru et al. (2015) Peripheral adipose tissue insulin resistance alters lipid composition and function of hippocampal synapses. J Neurochem 133:125-33
Taglialatela, Giulio; Rastellini, Cristiana; Cicalese, Luca (2015) Reduced Incidence of Dementia in Solid Organ Transplant Patients Treated with Calcineurin Inhibitors. J Alzheimers Dis 47:329-33