Osteoarthritis (OA) is a painful and debilitating disease of the synovial joints, affecting an estimated 27 million people in the United States. As the prevalence of obesity has risen dramatically in the past two decades, we now know that obesity is likely to be the primary preventable risk factor for OA. The goal of this project is to examine the influence of dietary fatty acids on obesity-associated OA in mice, and to examine their interaction with altered biomechanical and pro-inflammatory cytokines using various in vivo and in vitro models. We propose that low-grade chronic systemic inflammation - due to obesity or pro- inflammatory fatty acids in the diet - acts in synergy with local inflammatory cytokines or altered mechanical loading following injury to promote a state of inflammation and matrix degradation in the articular cartilage. We will pursue the following aims:
In Aim 1, we will examine the role of a high-fat lard- based diet in the development of OA in a leptin-receptor deficient mouse (db/db), and we will also measure osteoarthritic changes in diet-induced obese mice fed high-fat diets high in saturated and monounsaturated fatty acids, or omega-3 or omega-6 poly-unsaturated fatty acids.
In Aim 2, we will examine the effects of obesity (via high-fat diet or leptin deficiency) and weight loss on the progression of OA in a destabilized medial meniscus model of mouse OA.
In Aim 3, we will use controlled in vitro models of cartilage explant loading to examine the effects of mechanical stress in combination with pro- inflammatory cytokines and fatty acids on the anabolic and catabolic activities of the chondrocytes, as measured by biomarker production, gene expression, and protein synthesis of collagen II and aggrecan. Detailed studies of the interactions between specific biomechanical factors, pro-inflammatory mediators, and tissue metabolism in articular cartilage will improve our understanding of the pathology of the OA, particularly as it relates in vivo to """"""""biomechanical"""""""" factors such as obesity, injury, or weight loss. The results of this study will provide new insight into key elements of the pathogenesis of OA, and ultimately could lead to new treatments that exploit physical, dietary, and molecular therapies to prevent disease.

Public Health Relevance

The goal of this project is to examine the influence of dietary fatty acids on obesity-associated osteoarthritis in mice, and to examine their interaction with altered biomechanical and pro-inflammatory cytokines using various in vivo and in vitro models. We will test the hypothesis that low-grade chronic systemic inflammation - due to obesity or pro-inflammatory fatty acids in the diet - acts in synergy with local inflammatory cytokines or altered mechanical loading (due to obesity or joint instability) to promote a state of inflammation and matrix degradation in the articular cartilage.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG046927-02
Application #
8741926
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Williams, John
Project Start
2013-09-30
Project End
2018-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Duke University
Department
Orthopedics
Type
Schools of Medicine
DUNS #
City
Durham
State
NC
Country
United States
Zip Code
27705
Tang, Ruhang; Jing, Liufang; Willard, Vincent P et al. (2018) Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 9:61
Erdemir, Ahmet; Hunter, Peter J; Holzapfel, Gerhard A et al. (2018) Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research. J Biomech Eng 140:
Collins, Amber T; Kulvaranon, Micaela L; Cutcliffe, Hattie C et al. (2018) Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res Ther 20:232
Guilak, Farshid; Nims, Robert J; Dicks, Amanda et al. (2018) Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 71-72:40-50
Rowland, Christopher R; Glass, Katherine A; Ettyreddy, Adarsh R et al. (2018) Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials 177:161-175
Furman, Bridgette D; Kent, Collin L; Huebner, Janet L et al. (2018) CXCL10 is upregulated in synovium and cartilage following articular fracture. J Orthop Res 36:1220-1227
Liu, Betty; Goode, Adam P; Carter, Teralyn E et al. (2017) Matrix metalloproteinase activity and prostaglandin E2 are elevated in the synovial fluid of meniscus tear patients. Connect Tissue Res 58:305-316
Wu, Chia-Lung; Kimmerling, Kelly A; Little, Dianne et al. (2017) Serum and synovial fluid lipidomic profiles predict obesity-associated osteoarthritis, synovitis, and wound repair. Sci Rep 7:44315
Brunger, Jonathan M; Zutshi, Ananya; Willard, Vincent P et al. (2017) CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues. Arthritis Rheumatol 69:1111-1121
Wu, Chia-Lung; McNeill, Jenna; Goon, Kelsey et al. (2017) Conditional Macrophage Depletion Increases Inflammation and Does Not Inhibit the Development of Osteoarthritis in Obese Macrophage Fas-Induced Apoptosis-Transgenic Mice. Arthritis Rheumatol 69:1772-1783

Showing the most recent 10 out of 51 publications