Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease (AD) affected brain. A? has deleterious effects on mitochondrial and synaptic dysfunction. The underlying mechanisms and strategies to rescue such injury remain unclear. Recent studies have highlighted the role of mitochondrial A? in AD pathogenesis. Accumulation of mitochondrial A? may be an initiating pathological event leading to mitochondrial and neuronal perturbation. TOMM40 (Translocase of the Outer Mitochondrial Membrane-40kD) is the key subunit of the TOM complex, the main entry channel for the vast majority of imported proteins must pass to enter the mitochondrial interior. A polymorphism inTOMM40 is associated with an increased risk of late-onset AD and decreased cognitive performance48. This polymorphism is the only nuclear-encoded gene identified in genetic studies to date that presumably contributes to LOAD-related mitochondrial dysfunction. A? and APP can be imported into the mitochondria through the TOMM40 channel in an in vitro cell culture, however, the TOMM40-mediated A? import mechanism remains unclear and the impact of TOMM40 on amyloid pathology, mitochondrial and synaptic degeneration, and neuroinflammation in A? milieu have not yet been elucidated. In our pilot studies, we observed that TOMM40 knockdown mice displayed significantly reduced mitochondrial A? levels, along with improvement in mitochondrial and synaptic function in Tg mAPP mice overexpressing A?. Furthermore, reduced TOMM40 levels in Tg mAPP mice attenuate the innate immune and proinflammatory response. These data suggest that TOMM40 may potentially be of importance in mitochondrial amyloid pathology of AD. We hypothesize that impaired function of TOMM40 contributes to chronic mitochondrial A? accumulation relevant to developing amyloid pathology of AD, leading to mitochondrial and synaptic degeneration. The goal of this proposal is to gain new insight into the role of TOMM40 in AD pathogenesis, focusing on mitochondrial A? accumulation/clearance, amyloid pathology, synaptic mitochondrial properties, oxidative stress, inflammation, and synaptic function, utilizing a novel genetically manipulated transgenic TOMM40/AD mouse models and neuronal culture with altered TOMM40 levels (gaining/losing) in an A?-rich environment (genetic deficiency of global and neuronal TOMM40 and increased neuronal TOMM40 in AD-type transgenic mice overexpressing A?). The outcomes of the project could present that TOMM40 might be a potential new therapeutic target for limiting mitochondrial amyloid pathology thereby halting AD progression.

Public Health Relevance

The aim of this project is to investigate an unexplored role of TOMM40 (Translocase of the Outer Mitochondrial Membrane-40kD)) in mitochondrial amyloid pathology leading to synaptic mitochondrial and synaptic degeneration relevant to the pathogenesis of Alzheimer's disease. The outcomes of the proposed studies would also support that TOMM40 might be a potential new therapeutic agent for eliminating and limiting mitochondrial amyloid accumulation thereby halting progression of Alzheimer's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
1R01AG053041-01A1
Application #
9259161
Study Section
Neural Oxidative Metabolism and Death Study Section (NOMD)
Program Officer
Opanashuk, Lisa A
Project Start
2017-08-01
Project End
2022-05-31
Budget Start
2017-08-01
Budget End
2018-05-31
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Kansas Lawrence
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
076248616
City
Lawrence
State
KS
Country
United States
Zip Code
66045
Fang, Fang; Yu, Qing; Arancio, Ottavio et al. (2018) RAGE mediates A? accumulation in a mouse model of Alzheimer's disease via modulation of ?- and ?-secretase activity. Hum Mol Genet 27:1002-1014
Kalani, Komal; Yan, Shi Fang; Yan, Shirley ShiDu (2018) Mitochondrial permeability transition pore: a potential drug target for neurodegeneration. Drug Discov Today 23:1983-1989
Du, Fang; Yu, Qing; Chen, Allen et al. (2018) Astrocytes Attenuate Mitochondrial Dysfunctions in Human Dopaminergic Neurons Derived from iPSC. Stem Cell Reports 10:366-374
Yan, Shi Fang; Akhter, Firoz; Sosunov, Alexander A et al. (2018) Identification and Characterization of Amyloid-? Accumulation in Synaptic Mitochondria. Methods Mol Biol 1779:415-433
Akhter, F; Chen, D; Yan, S F et al. (2017) Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. Prog Mol Biol Transl Sci 146:341-361
Yu, Qing; Du, Fang; Douglas, Justin T et al. (2017) Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 59:223-239
Du, Fang; Yu, Qing; Yan, Shijun et al. (2017) PINK1 signalling rescues amyloid pathology and mitochondrial dysfunction in Alzheimer's disease. Brain 140:3233-3251