Based on the importance of defining new insights into cellular senescence, we initiated studies to investigate whether there might be a specific enhancer activation ?code? that underlies cellular senescence for identifying the responsible DNA binding transcription factors. While there is rapidly-emerging, and now unassailable evidence, on the role of the 40-70,000 enhancers in each cell type in development, homeostasis and, often, pathological events, their role in cellular senescence remains undefined. Furthermore, while cellular senescence represents a fundamental process of aging and a known driver of pathologies, the causative role of newly activated enhancer cohorts underlying progression of senescence remain poorly understood. Therefore, the goal of this proposal, supported by extensive preliminary data, is to test a novel hypothesis that the de novo appearance of two specific cohorts of enhancers sets into motion a progressive, functionally- important, alteration in gene transcription programs. Based on our study of the altered enhancer and chromosomal landscape during replicative senescence, we have begun to establish that the geroprotective mTOR inhibitor, Rapamycin, markedly delays all aspects of cellular senescence, including the appearance of new, functional, enhancers. Our focus is to elucidate the functional importance of a gained enhancer program underlying cellular senescence, and identify the critical DNA binding transcription factors underlying the transcriptional programs that are determinants of replicative senescence, based on the complementary expertise of the Suh and Rosenfeld laboratories. Specifically: i) We will use unbiased screens to document that at least two distinct activated enhancer networks independently regulate the proliferation arrest and SASP aspects of replicative senescence, respectively. ii) We will identify combinatorial factors synergizing with the previously-unrecognized transcription factors, NFI-A, NFI-C, to regulate the gained enhancers underling proliferation arrest, and those that, with SMAD2/3 and NFkB, to regulate the SASP program. In parallel, we can implicate the underlying signaling pathways. iii) We will identify previously unrecognized histone modification signatures of, and their functional importance in replicative senescence . iv) We will Identify Activin and Tgf?2 as inhibitors of the proliferation and SASP enhancer programs, respectively. Our proposal promises to provide transformative insights into molecular events that initiate and perpetuate the senescent cell phenotypes, and help elucidate potential novel therapeutic modalities against the deleterious SASP program.

Public Health Relevance

By using new screening approaches for identifying the DNA binding transcription factors that cooperatively bind to and activate the gained enhancer program underlying cellular senescence, this project will fill important gaps in our knowledge of how a fundamental aspect of the aging process can be driven by an activated enhancer program. This study will provide a mechanistic basis for developing strategies for altering the SASP component of cellular senescence that undermines healthy aging, including the application of differential effects of Activin and Tgf?2.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG061521-02
Application #
10017129
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Guo, Max
Project Start
2019-09-15
Project End
2022-04-30
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093