Mast cells (MCs) play important roles in allergic responses. Recent studies suggest that MCs are also essential to other inflammatory diseases by releasing inflammatory cytokines, chemokines, and the MC- specific proteases chymase and tryptase after degranulation. Pharmacological inactivation of MCs prevents or slows disease progression. Alzheimer?s disease (AD) is the most common cause of dementia and disability in the elderly. It is the sixth leading cause of death in the U.S., affecting more than 5 million Americans alone, according to the Alzheimer?s Association. One definitive diagnosis of AD is based on the presence of extracellular deposition of neurotoxic ?-amyloid (A?) into senile plaques. Human AD brains have elevated protease expression, neuronal death and synapse loss, blood-brain barrier (BBB) leakage, and activation of inflammatory cells such as microglia, astrocytes, and T cells. MCs also present in human AD brains, mainly in the hippocampus, cerebral cortex, and thalamus, but studies have yet to test whether these cells participate directly in the pathogenesis or serve merely as another inflammatory hallmark. Our preliminary data demonstrated that the plasma levels of MC activator IgE and MC granular contents tryptase and histamine were elevated in patients with early stage AD, indicating enhanced systemic MC activation. Anti-tryptase and CD117 antibodies detected MC accumulation in the cortex and hippocampus from human and murine AD brains. Using MC-deficient KitW-sh/W-sh mice and over-the-counter (OTC) MC inhibitor ketotifen, we demonstrated that the absence or pharmacological inhibition of MCs reduced A? deposition and senile plaque formation in the hippocampus and cerebral cortex, and reduced the numbers of total Iba-1-positive microglia and CD68-positive phagocytic microglia in these regions in APPSWE-PS1?e9+/? (APP-PS1) mice that develop cerebral amyloidosis. Brain tissue extract ELISA showed that the absence of MCs reduced the production of pathological A? species (A?1-40 and A?1-42). Adoptive transfer of in vitro-prepared MCs into KitW-sh/W-shAPP-PS1- recipient mice restored cortical and hippocampal A? deposition, microglia infiltration and activation, and AD brain cortex A?1-40 and A?1-42 contents. A preliminary water T-maze behavior test suggested that MC depletion improved cognitive decline in APP-PS1 mice. We hypothesize that MCs play a pathogenic role in AD by releasing pro-inflammatory cytokines and proteases, and MC inhibition with the anti-allergy drugs may become a novel therapy of human AD. We propose three aims to examine whether MC depletion or inhibition protects mice from Alzheimer?s disease; to examine whether genetic deficiency of Fc?R1 or anti-IgE antibody therapy protects mice from Alzheimer?s disease and, to establish the mechanistic link between mast cell activation and mouse Alzheimer?s disease.

Public Health Relevance

Brain tissues or plasma samples from patients and mice with Alzheimer?s disease (AD) contain increased levels of mast cells (MCs), MC activator IgE, IgE receptor Fc?R1, and MC activation products. Our preliminary studies demonstrated that MC-deficiency or inhibition with an over-the-counter human anti-allergy drug Zaditor improved AD-like pathologies and memory loss in mice. This proposal will test the hypothesis that MCs play a direct role in AD pathogenesis and the human anti-allergy drugs may have therapeutic potential in AD patients.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG063839-02
Application #
10143165
Study Section
Cellular and Molecular Biology of Glia Study Section (CMBG)
Program Officer
Mackiewicz, Miroslaw
Project Start
2020-04-15
Project End
2025-02-28
Budget Start
2021-03-01
Budget End
2022-02-28
Support Year
2
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115