As the bacterium Bacillus subtilis differentiates from the vegetative form into a dormant endospore, complex morphological and physiological changes occur which require the sequential expression of many genes. During the process, new RNA polymerase sigma subunits appear, which displace one another in a sequential cascade, confering on the RNA polymerase a changing specificity for the recognition of different classes of promoters. This mechanism of altering transcriptional specificity may be a fundamental element in the regulation of sporulation gene expression. Experiments are proposed to determine whether the sporulation specific sigma subunits are actually necessary for spore formation and we will attempt to identify non-sigma regulatory factors which may be required in addition. I have defined the promoters for two genes which are transcribed by a novel form of RNA polymerase containing a 37,000 d sigma. Mutagenesis of these promoters together with methylation protection and chemical crosslinking experiments will be used to test the hypothesis that the sigma subunit directly contacts nucleotides at the -10 region and the -35 region of a promoter enabling the RNA polymerase to bind to the promoter.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI020319-03
Application #
3129886
Study Section
Microbial Physiology and Genetics Subcommittee 2 (MBC)
Project Start
1983-07-01
Project End
1986-06-30
Budget Start
1985-07-01
Budget End
1986-06-30
Support Year
3
Fiscal Year
1985
Total Cost
Indirect Cost
Name
Emory University
Department
Type
Schools of Medicine
DUNS #
042250712
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Tatti, K M; Moran Jr, C P (1996) RNA polymerase sigma factors of Bacillus subtilis: purification and characterization. Methods Enzymol 273:149-62
Kellner, E M; Decatur, A; Moran Jr, C P (1996) Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol Microbiol 21:913-24
Baldus, J M; Buckner, C M; Moran Jr, C P (1995) Evidence that the transcriptional activator Spo0A interacts with two sigma factors in Bacillus subtilis. Mol Microbiol 17:281-90
Henriques, A O; Beall, B W; Roland, K et al. (1995) Characterization of cotJ, a sigma E-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J Bacteriol 177:3394-406
Driks, A; Roels, S; Beall, B et al. (1994) Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev 8:234-44
Schmidt, R; Decatur, A L; Rather, P N et al. (1994) Bacillus subtilis lon protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor sigma G. J Bacteriol 176:6528-37
Beall, B; Moran Jr, C P (1994) Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. J Bacteriol 176:2003-12
Baldus, J M; Green, B D; Youngman, P et al. (1994) Phosphorylation of Bacillus subtilis transcription factor Spo0A stimulates transcription from the spoIIG promoter by enhancing binding to weak 0A boxes. J Bacteriol 176:296-306
Beall, B; Driks, A; Losick, R et al. (1993) Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J Bacteriol 175:1705-16
Kirchman, P A; DeGrazia, H; Kellner, E M et al. (1993) Forespore-specific disappearance of the sigma-factor antagonist spoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol Microbiol 8:663-71

Showing the most recent 10 out of 37 publications