Cataract, the opacification of the ocular lens, is the leading cause of blindness worldwide. The etiology of most cases of sporadic pediatric cataract is still unknown, and genetic anomalies are estimated to account for 25-50% of these cases. We have developed a novel bioinformatics approach, iSyTE (integrated Systems Tool for Eye gene discovery, http://bioinformatics.udel.edu/Research/iSyTE) to predict genes that are associated with cataract. In the recent past, our finding that deficiency of the RNA granule (RG) component TDRD7 causes juvenile cataracts in human and animal models have indicated the significance of post-transcriptional regulatory mechanisms in the development and maintenance of lens transparency. We have now used iSyTE to identify a new conserved RNA binding protein and RG component Celf1 whose germline or lens-specific deletion in mouse mutants causes early onset cataracts. In this proposal, we will test the overarching hypothesis that Celf1 mediates post-transcriptional control of gene expression to regulate lens development. Specifically, we will address the following goals.
(Aim 1) Characterize the pathogenesis of lens defects in Celf1 mouse mutants and gain insights into the molecular underpinning of lens defects in Celf1 mutants by analysis of the lens transcriptome and proteome.
(Aim 2) Elucidate the direct RNA targets of Celf1 by RNA-immunoprecipitation followed by RNA-Sequencing (RNA- Seq). Further, test the mechanism of Celf1-mediated regulation for high-priority candidate genes that function in the lens, and are selected based on stringent filtering criteria. Specifically, we will investigate the molecular mechanism of Celf1 function in: 1) translational control of the cell cycl kinase inhibitor p27, 2) control of Prox1 expression in lens epithelium, and 3) control of mRNA stability for the fiber cell differentiation factor essential for nuclear degradation, Dnase2b. (Ai 3) Finally, integrate and analyze these data on Celf1 within the context of existing lens data to derive Celf-regulatory networks in the lens. These investigations aimed at elucidating the mechanism of Celf1 function will advance the understanding of post-transcriptional control of gene expression in the lens and lead to identification of new targets associated with cataracts.

Public Health Relevance

Cataracts are the leading cause of blindness worldwide. Therefore, it is essential to understand the molecular mechanisms that contribute to the formation and maintenance of lens transparency. The proposed research will result in the characterization of novel pathways in lens development and pathogenesis and will contribute to a publicly available web-based interactive tool - for both clinicians and scientists - that helps predict and prioritize genes to accelerate cataract gene discovery.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY021505-08
Application #
9653190
Study Section
Biology of the Visual System Study Section (BVS)
Program Officer
Araj, Houmam H
Project Start
2011-04-01
Project End
2021-02-28
Budget Start
2019-03-01
Budget End
2020-02-29
Support Year
8
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Delaware
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
059007500
City
Newark
State
DE
Country
United States
Zip Code
19716
Siddam, Archana D; Gautier-Courteille, Carole; Perez-Campos, Linette et al. (2018) The RNA-binding protein Celf1 post-transcriptionally regulates p27Kip1 and Dnase2b to control fiber cell nuclear degradation in lens development. PLoS Genet 14:e1007278
Krall, M; Htun, S; Anand, D et al. (2018) A zebrafish model of foxe3 deficiency demonstrates lens and eye defects with dysregulation of key genes involved in cataract formation in humans. Hum Genet 137:315-328
Anand, Deepti; Agrawal, Smriti A; Slavotinek, Anne et al. (2018) Mutation update of transcription factor genes FOXE3, HSF4, MAF, and PITX3 causing cataracts and other developmental ocular defects. Hum Mutat 39:471-494
Budak, Gungor; Dash, Soma; Srivastava, Rajneesh et al. (2018) Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues. Exp Eye Res 168:57-68
Kakrana, Atul; Yang, Andrian; Anand, Deepti et al. (2018) iSyTE 2.0: a database for expression-based gene discovery in the eye. Nucleic Acids Res 46:D875-D885
Cavalheiro, Gabriel R; Matos-Rodrigues, Gabriel E; Zhao, Yilin et al. (2017) N-myc regulates growth and fiber cell differentiation in lens development. Dev Biol 429:105-117
Srivastava, Rajneesh; Budak, Gungor; Dash, Soma et al. (2017) Transcriptome analysis of developing lens reveals abundance of novel transcripts and extensive splicing alterations. Sci Rep 7:11572
Anand, Deepti; Lachke, Salil A (2017) Systems biology of lens development: A paradigm for disease gene discovery in the eye. Exp Eye Res 156:22-33
Wang, Yichen; Terrell, Anne M; Riggio, Brittany A et al. (2017) ?1-Integrin Deletion From the Lens Activates Cellular Stress Responses Leading to Apoptosis and Fibrosis. Invest Ophthalmol Vis Sci 58:3896-3922
Patel, Nisha; Anand, Deepti; Monies, Dorota et al. (2017) Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 136:205-225

Showing the most recent 10 out of 23 publications