Neutrophils (PMN) destroy bacteria and fungi by several mechanisms, one of which depends on the presence of antibacterial peptides and proteins in the cell's azurophil granules and their delivery to phagolysosomes. Prominent among these antibacterial components are several small (Mr=3500) peptides, termed """"""""defensins,"""""""" which constitute 30-50% of the total protein in human azurophil granules. Although much information about defensin structure now exists, neither their antimicrobial mechanisms nor their overall roles in PMN function are known with certainty. The five specific aims of this proposal are 1: to characterize the effects of defensins on microorganisms and model membranes; 2. to examine the interactions of defensins with other components of PMN granules and with products of the respiratory burst; 3. to seek evidence that defensins operate within intact human leukocytes; 4. to compare human defensins with other antimicrobial or cytotoxic peptides and proteins, including two peptides, major basic protein (MBP) and eosinophil cationic protein (ECP), that are prominent in eosinophils; and 5. to screen for PMN defensin-deficiencies and to seek the presence of defensins and defensin-synthesis in cells other than PMN. More specifically, we will purify HNP-1, HNP-2 and HNP-3 from normal human PMN and test their in vitro activity against staphylococci, enterobacteria and yeast-phase Candida albicans. Defensins will also be combined with other proteins or peptides from human PMN granules to test for synergistic combinations. In addition, the interactions of defensins with OC1- and a myeloperoxidase, hydrogen peroxide, halide system will be examined to determine if defensins form reactive N-chloro groups that increase their antimicrobial efficacy. We will also characterize the uptake of defensins by susceptible and resistant microbial targets. Human defensins exert optimal microbicidal activity against bacteria and fungi that are metabolically active. They are inactive against respiratory-deficient C. albicans or nongrowing bacteria. Defensins cause sequential permeabilization of the outer membrane (OM) and inner membrane (IM) of a susceptible target, E. coli ML-35(pBR322). Such observations are consistent with and suggestive of the possibility that defensins form voltage-dependent membrane pores. We will use intact microorganisms and model membrane systems to test this hypothesis. The long term objective of this work is to discover and characterize the effector substances and antimicrobial mechanisms of phagocytic cells. Successful completion of this proposal will lead to a better understanding of host resistance mechanisms, and may facilitate the design of novel antibiotics patterned after defensins.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI022839-04
Application #
3134421
Study Section
Bacteriology and Mycology Subcommittee 1 (BM)
Project Start
1985-12-01
Project End
1992-11-30
Budget Start
1988-12-01
Budget End
1989-11-30
Support Year
4
Fiscal Year
1989
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
Schools of Medicine
DUNS #
119132785
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Doherty, Timothy; Waring, Alan J; Hong, Mei (2006) Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR. Biochim Biophys Acta 1758:1285-91
Tang, Ming; Waring, Alan J; Lehrer, Robert I et al. (2006) Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR. Biophys J 90:3616-24
Tang, Ming; Waring, Alan J; Hong, Mei (2005) Intermolecular packing and alignment in an ordered beta-hairpin antimicrobial peptide aggregate from 2D solid-state NMR. J Am Chem Soc 127:13919-27
Mani, Rajeswari; Waring, Alan J; Lehrer, Robert I et al. (2005) Membrane-disruptive abilities of beta-hairpin antimicrobial peptides correlate with conformation and activity: a 31P and 1H NMR study. Biochim Biophys Acta 1716:11-8
Buffy, Jarrod J; Waring, Alan J; Hong, Mei (2005) Determination of peptide oligomerization in lipid bilayers using 19F spin diffusion NMR. J Am Chem Soc 127:4477-83
Buffy, Jarrod J; McCormick, Melissa J; Wi, Sungsool et al. (2004) Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1. Biochemistry 43:9800-12
Mani, Rajeswari; Buffy, Jarrod J; Waring, Alan J et al. (2004) Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1. Biochemistry 43:13839-48
Owen, S M; Rudolph, D; Wang, W et al. (2004) A theta-defensin composed exclusively of D-amino acids is active against HIV-1. J Pept Res 63:469-76
Wang, Wei; Owen, Sherry M; Rudolph, Donna L et al. (2004) Activity of alpha- and theta-defensins against primary isolates of HIV-1. J Immunol 173:515-20
Cole, Alexander M; Lehrer, Robert I (2003) Minidefensins: antimicrobial peptides with activity against HIV-1. Curr Pharm Des 9:1463-73

Showing the most recent 10 out of 94 publications