The proposed project seeks to investigate molecular, genetic, and pharmacological aspects of folate metabolism in the intracellular protozoan parasite Toxoplasma gondii, a common infectious agent which is a particularly insidious opportunistic pathogen of immunodeficient patients. Acute toxoplasmosis is also a leading cause of neurological abnormalities resulting from fetal infection. Aside from its clinical importance, toxoplasma is an appealing organisms for laboratory study: the parasite is convenient to grow in vitro, and lends itself to genetic analysis more readily than do other protozoan parasites. Because T. gondii is incapable of thymidine salvage, the folate pathway is a key target for both clinical therapy and, potentially, the introduction of selectable markers for genetic studies in the laboratory.
The specific aims of this proposal are to study the pharmacology of drugs which block different stages of folate metabolism, isolate various types of mutants altered in their response to these agents, and to clone and characterize the fused gene encoding the parasite dihydrofolate reductase/thymidylate synthase enzyme. The pharmacological studies take advantage of an in vitro assay developed to assess the extent of synergism observed when drugs affecting different steps in the folate pathway are used in combination. These assays will be useful in characterizing drug- resistant mutants, establishing the spectrum of drug sensitivity in laboratory and clinical isolates to T. gondii, and assessing the promise of new therapeutic agents for the treatment of toxoplasmosis. Mutant parasites isolated from clinical cases or selected in the laboratory will be studied to determine the molecular basis of drug resistance in Toxoplasma, and to refine treatment strategies to minimize complications arising from the emergence of resistant strains. Sequence analysis of cDNA clones (already isolated) encoding the parasite DHFR/TS enzyme will be necessary for the analysis of mutant strains, and in combination with genomic clones will provide the basis for engineering vectors for the development of transfection protocols. DHFR/TS sequences will also be of consider able value in elucidating the evolutionary relationship of the parasitic protozoa and the origins of this interesting fused enzyme. Antibodies prepared to the DHFR/TS protein and synthetic polypeptides will be used to purify protein for future structural and enzymatic studies, which will be valuable in the rational design of new parasiticidal drugs. In addition to assisting in the design of new treatment strategies, this study initiates a comprehensive effort on the part of the PI to further the development of Toxoplasma as a useful paradigm for the genetic analysis of parasite cell and molecular biology. In particular, the recently demonstrated ability to microscopically manipulate the parasite oocyst should facilitate the isolation of progeny form genetic crosses, and offers a novel approach to the development of a parasite of a parasite transfection system.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI028724-03
Application #
3143231
Study Section
Special Emphasis Panel (ARR (V1))
Project Start
1989-07-01
Project End
1993-06-30
Budget Start
1991-07-01
Budget End
1993-06-30
Support Year
3
Fiscal Year
1991
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Type
Schools of Arts and Sciences
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ouologuem, Dinkorma T; Djimdé, Abdoulaye A; Diallo, Nouhoum et al. (2013) Toxoplasma gondii seroprevalence in Mali. J Parasitol 99:371-4
Pszenny, Viviana; Davis, Paul H; Zhou, Xing W et al. (2012) Targeted disruption of Toxoplasma gondii serine protease inhibitor 1 increases bradyzoite cyst formation in vitro and parasite tissue burden in mice. Infect Immun 80:1156-65
Gregg, Beth; Dzierszinski, Florence; Tait, Elia et al. (2011) Subcellular antigen location influences T-cell activation during acute infection with Toxoplasma gondii. PLoS One 6:e22936
Beiting, Daniel P; Roos, David S (2011) A systems biological view of intracellular pathogens. Immunol Rev 240:117-28
Jammallo, Lauren; Eidell, Keith; Davis, Paul H et al. (2011) An insertional trap for conditional gene expression in Toxoplasma gondii: identification of TAF250 as an essential gene. Mol Biochem Parasitol 175:133-43
Peixoto, Lucia; Chen, Feng; Harb, Omar S et al. (2010) Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host Microbe 8:208-18
Bahl, Amit; Davis, Paul H; Behnke, Michael et al. (2010) A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics 11:603
Shanmugam, Dhanasekaran; Wu, Bo; Ramirez, Ursula et al. (2010) Plastid-associated porphobilinogen synthase from Toxoplasma gondii: kinetic and structural properties validate therapeutic potential. J Biol Chem 285:22122-31
Guiguemde, W Armand; Shelat, Anang A; Bouck, David et al. (2010) Chemical genetics of Plasmodium falciparum. Nature 465:311-5
Dzierszinski, Florence; Pepper, Marion; Stumhofer, Jason S et al. (2007) Presentation of Toxoplasma gondii antigens via the endogenous major histocompatibility complex class I pathway in nonprofessional and professional antigen-presenting cells. Infect Immun 75:5200-9

Showing the most recent 10 out of 26 publications