Mycobacterium leprae is unique among bacterial pathogens in its ability to invade the peripheral nervous system and to cause nerve damage, which accounts for the disabilities in leprosy patients. This property makes M. leprae a model to study the mechanism of nerve damage, particularly demyelination, in other neurodegenerative diseases. The components of M. leprae which bind peripheral nerves and induce nerve damage are not known. The PI proposes that M. leprae interferes with critical Schwann cell functions and subsequently causes nerve dysfunction before the immune response comes into play. Using a well-characterized in vitro Schwann cell-sensory neuron co-culture system, which mimics in vivo conditions, but is devoid of immune cells, the PI found that M. leprae and its cell wall fraction alone induce significant demyelination and axonal damage. The PI and colleagues have recently shown that laminin-2 is an initial neural target of M. leprae; since the laminin-2 isoform completely surrounds the Schwann cell-axon units, the PI proposes that M. leprae should bind to laminin-2 before inducing nerve damage in early infection. Therefore, laminin-2-binding antigens are the most likely components of M. leprae that mediate bacterial binding and invasion, and also induce nerve damage. The main theme of the application is to systematically identify the laminin-binding components of M. leprae that mediate the initial interaction with peripheral nerves and characterize their capacity to induce nerve damage. In preliminary studies, the PI has shown that phenolic glycolipid 1 (PGL-1) and a novel M. leprae cell wall protein of 21 kDa bind laminin-2. These data also suggest the presence of other laminin-binding components of M. leprae. Since the preliminary studies indicate that PGL-1 alone can induce significant demyelination, the PI proposes that the laminin-binding components are capable of inducing demyelination. Therefore, the PI proposes the following: (1) characterize the laminin-2-binding activity of PGL-1 and the 21 kDa protein and their roles in Schwann cell invasion, (2) identify and characterize other potential laminin-binding components in the M. leprae genome with special emphasis on M. leprae-specific proteins by screening an ordered cosmid library of M. leprae, using laminin-2 as a probe, and (3) characterize the demyelination and axonal damage induced by M. leprae laminin-binding components. These studies should provide important insights into the early molecular events of nerve damage in leprosy and other neurodegenerative diseases and will eventually lead to the development of novel therapeutics and diagnostics for peripheral neuropathies.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BM-1 (03))
Program Officer
Ginsberg, Ann M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rockefeller University
Other Domestic Higher Education
New York
United States
Zip Code
Hess, Samuel; Rambukkana, Anura (2015) Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions. Curr Opin Microbiol 23:179-88
Masaki, Toshihiro; Qu, Jinrong; Cholewa-Waclaw, Justyna et al. (2013) Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152:51-67
Im, Jin S; Tapinos, Nikos; Chae, Gue-Tae et al. (2006) Expression of CD1d molecules by human schwann cells and potential interactions with immunoregulatory invariant NK T cells. J Immunol 177:5226-35
Rambukkana, Anura (2004) Mycobacterium leprae-induced demyelination: a model for early nerve degeneration. Curr Opin Immunol 16:511-8
Rambukkana, Anura; Kunz, Stefan; Min, Jenny et al. (2003) Targeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination. Proc Natl Acad Sci U S A 100:16071-6
Oliveira, Rosane B; Ochoa, Maria T; Sieling, Peter A et al. (2003) Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun 71:1427-33
Shimoji, Y; Ng, V; Matsumura, K et al. (1999) A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc Natl Acad Sci U S A 96:9857-62