CD8+ T cells play a critical role in defense against viral, intracellular bacterial, and protozoan infections. To confer protective immunity, vaccines against these agents need to elicit potent CD8+ T-cell memory. Despite recognition of their importance in vaccinations, the underlying mechanisms in the generation of memory T cells remains poorly understood. The magnitude of T cell memory is dependent upon, the extent of clonal expansion and, the subsequent death of activated antigen-specific T cells. Understanding the generation of memory T cells is contingent upon elucidating the mechanisms that regulate proliferation and apoptosis of activated CD8+ T cells in vivo. Our long-term goal is to understand the molecular and cellular basis of CD8+ T cell memory. We have initiated studies investigating the role of TNF receptors (TNFRs) in regulating the generation of CD8+ memory T cells using the lymphocytic choriomeningitis virus (LCMV) model in mice. Preliminary studies have revealed that there is a dramatic enhancement in the number of LCMV-specific memory CD8+ T cells in TNFR I-and TNFR I & II-deficient mice, as compared to wild type (+1+) mice. The goal of this application is to understand the mechanisms by which TNFRs regulate generation of memory CD8+ T cells. We hypothesize that lack of apoptotic signals in TNFR-deficient mice leads to increased number of memory CD8+ T cells, that otherwise would be slated for deletion. The objectives of this proposal are three fold: First, to elucidate the mechanistic basis of downregulating CD8+ T cell responses by TNFRs, by (1) examining the effect of TNFR deficiency on the proliferation and apoptosis of LCMV-specific CD8+ T cells in vitro and in vivo; (2) determining the ligand responsible for TNFR-mediated effects:TNFa vs. LTa. Second, to dissect the importance of TNFR signaling on CD8+ T cells (direct effects) vs. non-CD8+ T cells (indirect effects) in regulating the generation of LCMV-specific memory CD8+ T cells, by using bone marrow chimeras and CD4-deficient mice. Third, to examine the role of TNFRs on the functional attributes of LCMV specific CD8+ T cells in vitro and in vivo. Immunological memory can be accounted for by both quantitative (increased number of antigen-specific T cells) and qualitative (heightened sensitivity) differences in memory T cells. Our preliminary studies show that loss of TNFR I lead to increased number (""""""""quantity"""""""") of memory CD8+ T cells. We will examine for qualitative differences between TNFR-deficient and +/+ LCMV-specific memory CD8+ T cells by comparing the activation thresholds to produce cytokines and perform cell-mediated cytotoxicity as a function of antigen concentration, CD8 requirement, and time. The function of TNFR deficient memory CD8+ T cells will be tested in vivo in (1) LCMV-immune mice and (2) DNA vaccine-immunized mice by studying protective immunity against lethal CD8+ T cell-mediated CNS immunopathology. Despite several lines of evidence of a suppressive role for TNF in T-cell-mediated autoimmunity, the underlying regulatory mechanisms are not well understood. The proposed experiments in this application will provide critical information towards (i) development of effective vaccines; (ii) understanding the pathogenesis of autoimmune disorders, and (iii) formulating immunotherapies against immune-mediated diseases.
Showing the most recent 10 out of 17 publications