Melanin is a pigment that performs a variety of functions and is found in the plant and animal kingdoms. In fungi melanin reinforces cell walls, shields against ultraviolet radiation as well as toxic metals, harnesses high energy electromagnetic radiation and contributes to virulence. Despite its importance, very little is known about the structure of melanin because it is insoluble and amorphous, making it difficult to analyze. In the previous funding period we described a new, melanin-based process for harnessing energy through the capture of radiation; we laid the foundation for a new melanoma therapy targeting melanin that is now in clinical trials; we demonstrated the remarkable ability of melanin to shield against radiation and provided a novel way to study the structure of melanin by solid-state NMR analysis; we discovered an extracellular vesicular transport in fungi (associated with the formation of a fungal melanosome). This research program renewal is focused on melanization in the human pathogenic fungus Cryptococcus neoformans, which is responsible for almost a million annual cases of meningitis worldwide, primarily in patients with AIDS. We will build on the achievements and tools of the previous funding period in order to focus on the fungal melanosome and the process of melanization.
Three Specific Aims are proposed: 1) To generate a molecular definition for the cargo in melanizing vesicle populations; 2) To investigate the mechanism by which the fungal melanosome interacts with the cell wall; 3) To investigate the molecular structure of C. neoformans melanin assemblies on their cell-wall scaffold. C. neoformans melanin is critical for virulence and it is also a potential target for therapeutic drug development. Agents that target melanin are attractive because they could be applied against a broad array of pathogenic fungi.

Public Health Relevance

Melanin is a complex pigment that is involved in numerous biological processes from protection against sunlight to energy harvest. Melanin also contributes to fungal virulence by undermining host defense mechanisms and melanized fungi are much less resistant to certain antifungal drugs. This proposal seeks to understand how melanin is made in an important human pathogenic fungus because this information is of fundamental importance for understanding fungal cell biology and can potentially lead to new therapies that target melanization pathways.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
AIDS-associated Opportunistic Infections and Cancer Study Section (AOIC)
Program Officer
Duncan, Rory A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Public Health
United States
Zip Code
Casadevall, Arturo (2018) Fungal Diseases in the 21st Century: The Near and Far Horizons. Pathog Immun 3:183-196
De Leon-Rodriguez, Carlos M; Rossi, Diego C P; Fu, Man Shun et al. (2018) The Outcome of the Cryptococcus neoformans-Macrophage Interaction Depends on Phagolysosomal Membrane Integrity. J Immunol 201:583-603
Nosanchuk, J D; Jeyakumar, A; Ray, A et al. (2018) Structure-function analysis and therapeutic efficacy of antibodies to fungal melanin for melanoma radioimmunotherapy. Sci Rep 8:5466
Walker, Louise; Sood, Prashant; Lenardon, Megan D et al. (2018) The Viscoelastic Properties of the Fungal Cell Wall Allow Traffic of AmBisome as Intact Liposome Vesicles. MBio 9:
De Leon-Rodriguez, Carlos M; Fu, Man Shun; Çorbali, M Osman et al. (2018) The Capsule of Cryptococcus neoformans Modulates Phagosomal pH through Its Acid-Base Properties. mSphere 3:
Cordero, Radames J B; Robert, Vincent; Cardinali, Gianluigi et al. (2018) Impact of Yeast Pigmentation on Heat Capture and Latitudinal Distribution. Curr Biol 28:2657-2664.e3
Martinez, Luis R; Boucaud, Dwayne W; Casadevall, Arturo et al. (2018) Factors Contributing to the Success of NIH-Designated Underrepresented Minorities in Academic and Nonacademic Research Positions. CBE Life Sci Educ 17:ar32
Almeida-Paes, Rodrigo; Almeida-Silva, Fernando; Pinto, Gabriela Costa Maia et al. (2018) L-tyrosine induces the production of a pyomelanin-like pigment by the parasitic yeast-form of Histoplasma capsulatum. Med Mycol 56:506-509
Vij, Raghav; Cordero, Radames J B; Casadevall, Arturo (2018) The Buoyancy of Cryptococcus neoformans Is Affected by Capsule Size. mSphere 3:
Rizzo, Juliana; Colombo, Ana C; Zamith-Miranda, Daniel et al. (2018) The putative flippase Apt1 is required for intracellular membrane architecture and biosynthesis of polysaccharide and lipids in Cryptococcus neoformans. Biochim Biophys Acta Mol Cell Res 1865:532-541

Showing the most recent 10 out of 205 publications