Gamma-delta T cells have unique features in comparison to alpha-beta T cells. It now has become clear that gamma-delta T cells recognize non-peptide and non-processed bacterial and environmental antigens, as well as stress-associated antigens expressed on epithelium and on primary carcinomas. Both in vitro and in vivo studies have demonstrated that Gamma-delta T cells can be differentiated into IFN-gamma (Th1-like)- and IL-4 (Th2-like)-producing cells. However, the molecular mechanisms underlying such differentiation have not been defined, and the precise role of the cytokines produced by gamma-delta T cells in vivo remains unknown. Our preliminary studies have demonstrated that gamma-delta T cells predominantly produce IFN-gamma upon activation, and the mechanisms that control gamma-delta T cell differentiation are different from CD4+ T cells. Furthermore, we have presented evidence that gamma-delta T cells play an important role in tumor immunity through their IFN-gamma production. Based on these data, we hypothesize that the molecular mechanisms for gamma-delta T cell differentiation, especially the factors that modulate gamma-delta T cell IFN-gamma secretion, are fundamentally different from those in alpha-beta CD4+ T cells. Moreover, we hypothesize that gamma-delta T cells play important roles in tumor immunity and in regulating the adaptive immune response (CD4+ and CD8+ T cell function) through their predominant production of IFN-gamma. To address these hypotheses, three specific aims are planned. First, delineation of the molecular mechanisms that control cytokine secretion by gamma-delta T cells. Here we will dissect the molecular mechanisms leading to IFN-gamma and IL-4 production by splenic gamma-delta T cells, focusing upon the different signaling pathways that have been well-studied in alpha-beta CD4+ T cells. Second, the role of gamma-delta T cells in tumor immunity in vivo through IFN-gamma production will be investigated. Here, we will use reconstituted mice in which T cell composition is intact except the ability of gamma-delta T cells to produce IFN-gamma allowing us to define the role of IFN-gamma produced by gamma-delta T cells in protective tumor response and the mechanisms. Finally, we will determine the roles of gamma-delta T cells in regulating the adaptive immune response using ovalbumin protein or peptide immunization system, to define the role of gamma-delta T cells in the development of antigen-specific CD4+ and CD8+ T cell effector function.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Experimental Immunology Study Section (EI)
Program Officer
Rathbun, Gary
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Internal Medicine/Medicine
Schools of Medicine
New Haven
United States
Zip Code
Marks, Benjamin R; Nowyhed, Heba N; Choi, Jin-Young et al. (2009) Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nat Immunol 10:1125-32
Lim, Jae Hyang; Stirling, Brigid; Derry, Jonathan et al. (2007) Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity 27:349-60
Tao, Jian; Gao, Yunfei; Li, Ming O et al. (2007) JNK2 negatively regulates CD8+ T cell effector function and anti-tumor immune response. Eur J Immunol 37:818-29
Chen, Liang; He, Weifeng; Kim, Sean T et al. (2007) Epigenetic and transcriptional programs lead to default IFN-gamma production by gammadelta T cells. J Immunol 178:2730-6
You, Xin; Pan, Meng; Gao, Wenli et al. (2006) Effects of a novel tylophorine analog on collagen-induced arthritis through inhibition of the innate immune response. Arthritis Rheum 54:877-86
Gao, Yunfei; Zhang, Dongqing; Sun, Buxiang et al. (2006) Active hexose correlated compound enhances tumor surveillance through regulating both innate and adaptive immune responses. Cancer Immunol Immunother 55:1258-66
Gao, Yunfei; Tao, Jian; Li, Ming O et al. (2005) JNK1 is essential for CD8+ T cell-mediated tumor immune surveillance. J Immunol 175:5783-9