The bifunctional aminoglycoside-modifying enzyme AAC(6')-Ie-APH(2)-Ia is the single most important resistance enzyme for aminoglycoside antibiotics in Gram-positive cocci as it is singlehandedly produces resistance to virtually all aminoglycoside antibiotics and broadly disseminated among clinical enterococcal and staphylococcal isolates. Appearance of the closely-related monofunctional APH(2)-Ib phosphotransferase and AAC(6')-Im acetyltransferase in Gram-negative bacteria heralding the potential for spread of these expanded- spectrum enzymes among a wide variety of clinically important pathogens. Lack of kinetic and structural information regarding these enzymes constitutes the major impediment for the design of novel aminoglycoside antibiotics and inhibitors of aminoglycoside-modifying enzymes. The long-term goal is to delineate kinetic and structural mechanisms of interaction of aminoglycoside-modifying enzymes with their substrates to provide strong basis for the rational design of new effective antibiotics. The objectives in this particular application is to conduct detailed studies of the APH(2)-Ib, AAC(6')-Im, and AAC(6')-Ie-APH(2)-Ia enzymes by pursuing three specific aims: 1. Perform kinetics and structural studies of the AAC(6')-Im, APH(2)-Ib, and AAC(6')-Ie- APH(2)-Ia aminoglycoside-modifying enzymes; 2) Elucidate molecular mechanisms for the nucleotide triphosphate selectivity by the aminoglycoside phosphotransferases; and 3) Evaluate evolutionary potential of the bifunctional AAC(6')-Ie-APH(2)-Ia aminoglycoside-modifying enzyme. Multidisciplinary approach that include molecular biology, protein chemistry, detailed enzymology, purification and structural analyses of the products of the reactions by NMR and mass spectrometry, and X-ray crystallography of the native enzymes and their complexes with products, substrates and substrate analogues will be utilized to elucidate mechanistic aspects of these clinically important antibiotic-resistance enzymes. The detailed structural and kinetic studies of the AAC(6')-Im, APH(2)-Ib, and AAC(6')-Ie-APH(2)-Ia enzymes and elucidation of the molecular mechanism of recognition of nucleotide triphosphates (NTPs) by aminoglycoside phosphotransferases disclosed in this grant proposal will provide insight into their unique over-encompassing breadth of activity. These studies will also contribute to our understanding of the mechanisms of these enzymes, and provide solid basis for the rational design of novel aminoglycoside antibiotics resistant to modification by the aminoglycoside-modifying enzymes and inhibitors targeting the nucleotide binding site of aminoglycoside phosphotransferases. Evaluation of the evolutionary potential of the bifunctional AAC(6')-Ie-APH(2)-Ia enzyme towards broadening the spectrum of conferred resistance to aminoglycoside antibiotics would provide an important guidance for the future utility of clinically important aminoglycosides. Ultimately, such knowledge will provide the basis for the design of new aminoglycoside antibiotics and inhibitors of the aminoglycoside- modifying enzymes for treatment of life-threatening infections.

Public Health Relevance

The proposed research is relevant to public health because elucidation of molecular and structural mechanisms of aminoglycoside-modifying enzymes is ultimately expected to result in development of novel aminoglycoside antibiotics and inhibitors. Design of such novel antibacterial agents will be a breakthrough for treatment of life-threatening infectious diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI057393-10
Application #
8830903
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Huntley, Clayton C
Project Start
2003-12-01
Project End
2017-04-30
Budget Start
2015-05-01
Budget End
2017-04-30
Support Year
10
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Notre Dame
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
824910376
City
Notre Dame
State
IN
Country
United States
Zip Code
46556
Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha et al. (2014) Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia. Acta Crystallogr D Biol Crystallogr 70:1561-71
Smith, Clyde A; Toth, Marta; Weiss, Thomas M et al. (2014) Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis. Acta Crystallogr D Biol Crystallogr 70:2754-64
Bhattacharya, Monolekha; Toth, Marta; Smith, Clyde A et al. (2013) Bulky ""gatekeeper"" residue changes the cosubstrate specificity of aminoglycoside 2''-phosphotransferase IIa. Antimicrob Agents Chemother 57:3763-6
Smith, Clyde A; Frase, Hilary; Toth, Marta et al. (2012) Structural basis for progression toward the carbapenemase activity in the GES family of ?-lactamases. J Am Chem Soc 134:19512-5
Smith, Clyde A; Toth, Marta; Frase, Hilary et al. (2012) Aminoglycoside 2''-phosphotransferase IIIa (APH(2'')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2'' kinases. J Biol Chem 287:12893-903
Toth, Marta; Vakulenko, Sergei B; Smith, Clyde A (2012) Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6'-acetyltransferase AAC(6')-Im. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:472-5
Frase, Hilary; Toth, Marta; Vakulenko, Sergei B (2012) Revisiting the nucleotide and aminoglycoside substrate specificity of the bifunctional aminoglycoside acetyltransferase(6')-Ie/aminoglycoside phosphotransferase(2'')-Ia enzyme. J Biol Chem 287:43262-9
Toth, Marta; Frase, Hilary; Antunes, Nuno Tiago et al. (2010) Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2''-IVa. Protein Sci 19:1565-76
Toth, Marta; Frase, Hilary; Chow, Joseph W et al. (2010) Mutant APH(2'')-IIa enzymes with increased activity against amikacin and isepamicin. Antimicrob Agents Chemother 54:1590-5
Young, Paul G; Walanj, Rupa; Lakshmi, Vendula et al. (2009) The crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] provide insights into substrate selectivity in the APH(2'') subfamily. J Bacteriol 191:4133-43

Showing the most recent 10 out of 16 publications