The long-term goal of this research is to understand how chemokines recognize their binding partners in order to develop new molecules that alter chemokine signaling for therapeutic benefit. Chemokines and their cell- surface receptors form a network of signaling proteins that orchestrate the development and function of the cellular immune system by guiding the migration of white blood cells and homing of stem cells. Many of these proteins have been validated as drug targets for inflammatory and autoimmune diseases, HIV-AIDS, cardiovascular disease and cancer. Our previous work revealed the structural basis and functional importance of self-association, glycosaminoglycan binding, and receptor sulfotyrosine recognition for the chemokine CXCL12 and its receptor CXCR4, and demonstrated that engineered CXCL12 variants can be used to block cancer progression in animal models of metastatic disease. Atomic resolution details of other chemokine- receptor complexes are needed to guide the development of new small molecule and biologic drugs. With 46 chemokine ligands and 23 receptors, the human chemokine network represents the largest GPCR family with respect to the number of endogenous ligands and receptors. Across the chemokine family, ligand-receptor specificity varies from strictly monogamous to highly promiscuous, but the molecular determinants of selectivity are unknown. Until recently, details of the full chemokine-receptor interface were lacking due to the extreme challenges presented by crystallization of active GPCR complexes. However, the availability of a rich sequence database and multiple structures of chemokine-receptor complexes reported since the last renewal of this R01 now enable us to address the most pressing question in the chemokine field: how is selective promiscuity embedded in a collection of highly conserved chemokine and receptor structures? In the first specific aim of this competing renewal application we propose a comprehensive analysis of this complex signaling network, in order to decipher the ?chemokine code? governing receptor-ligand selectivity and promiscuity.
The second aim will test the hypothesis that selective chemokine promiscuity is encoded across a broad protein-protein interface using the chemokines CXCL11 and CXCL12 and their receptors ACKR3, CXCR3 and CXCR4 as a model system to test the validity of the hierarchical model developed in aim 1.
Aim 3 tackles the puzzle of extreme promiscuity in the chemokine family with the atypical receptor ACKR1 as an experimental testbed. ACKR1/DARC is a scavenger receptor on red blood cells that binds many different chemokines but also plays an essential role in hematopoiesis in the bone marrow. We hypothesize that ACKR1 uses an elongated disordered N-terminal domain to bind many protein ligands with distinct but overlapping binding sites. Completion of the work proposed here will provide a new foundation upon which the molecular determinants of chemokine-receptor recognition can be precisely and systematically elucidated.

Public Health Relevance

Chemokines and their cell-surface receptors form a network of signaling proteins that guide the homing and migration of white blood cells, stem cells and metastatic cancer cells to specific organs and tissues. These distinct and overlapping processes are controlled by the coordinated and non-redundant effects of dozens of different chemokine-receptor pairs, despite the extremely high similarity of all 46 human chemokines and an equivalent level of similarity for the 23 receptors. Our goal is to use advanced computational tools and experimental studies to decipher the ?chemokine code? that determines which receptor-ligand combinations orchestrate cell migration in the human body.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI058072-15A1
Application #
10049899
Study Section
Macromolecular Structure and Function C Study Section (MSFC)
Program Officer
Singleton, Kentner L
Project Start
2004-06-11
Project End
2025-05-31
Budget Start
2020-06-11
Budget End
2021-05-31
Support Year
15
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Medical College of Wisconsin
Department
Biochemistry
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Gao, Xianlong; Albee, Lauren J; Volkman, Brian F et al. (2018) Asymmetrical ligand-induced cross-regulation of chemokine (C-X-C motif) receptor 4 by ?1-adrenergic receptors at the heteromeric receptor complex. Sci Rep 8:2730
Szpakowska, Martyna; Nevins, Amanda M; Meyrath, Max et al. (2018) Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 175:1419-1438
Albee, Lauren J; LaPorte, Heather M; Gao, Xianlong et al. (2018) Identification and functional characterization of arginine vasopressin receptor 1A : atypical chemokine receptor 3 heteromers in vascular smooth muscle. Open Biol 8:
Egner, John M; Jensen, Davin R; Olp, Michael D et al. (2018) Development and Validation of 2D Difference Intensity Analysis for Chemical Library Screening by Protein-Detected NMR Spectroscopy. Chembiochem 19:448-458
Dishman, Acacia F; Volkman, Brian F (2018) Unfolding the Mysteries of Protein Metamorphosis. ACS Chem Biol 13:1438-1446
Thomas, Monica A; Kleist, Andrew B; Volkman, Brian F (2018) Decoding the chemotactic signal. J Leukoc Biol 104:359-374
Hall, Cherisse L; Lytle, Betsy L; Jensen, Davin et al. (2017) Structure and Dimerization of IreB, a Negative Regulator of Cephalosporin Resistance in Enterococcus faecalis. J Mol Biol 429:2324-2336
Albee, Lauren J; Eby, Jonathan M; Tripathi, Abhishek et al. (2017) ?1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 6:
Getschman, A E; Imai, Y; Larsen, O et al. (2017) Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 114:12460-12465
Cheng, You-Hong; Eby, Jonathan M; LaPorte, Heather M et al. (2017) Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. PLoS One 12:e0187949

Showing the most recent 10 out of 72 publications