Because T cell activation is a highly regulated event with crucial consequences to the host, it is important to understand mechanisms that promote as well as down-regulate it. We discovered DC-HIL, a type I transmembrane protein expressed constitutively at high levels by epidermal Langerhans cells and dendritic cells (DC). Soluble DC-HIL bound to activated (but not naive) T cells, indicating that expression of its T cell ligand (DC-HIL-L) requires activation. In T cell activation assays, immobilized DC-HIL acted as a negative agonist, markedly attenuating T cell proliferation and IL-2 secretion triggered by signaling via the T cell receptor. By contrast, soluble DC-HIL augmented the mixed lymphocyte reaction and exacerbated contact hypersensitivity (CH) when injected intraperitoneally into mice during hapten-challenge (but not during hapten-priming); herein, DC-HIL acted as an antagonist interfering with binding of DC-HIL to DC-HIL-L. We hypothesize that the DC-HIL/DC-HIL-L pathway transmits a potent inhibitory signal to activated T cells and plays an important role in down-regulating effector T cell responses.
Our specific aims are to: (1) Determine whether DC-HIL expression on DC modulates antigen presenting cell function in vitro. We will examine the ability of DC engineered genetically to over-express or silence DC-HIL, to activate T cells. (2) Characterize the inhibitory function of DC-HIL/DC-HIL-L pathway in vivo using the CHmodel. We will: identify DC-HIL- or DC-HIL-L-expressing cells in skin and lymph nodes (LN) of hapten-sensitized mice; characterize LN T cells in sensitized mice treated with soluble DC-HIL; compare DC-HIL/DC-HIL-L and PD-1/PD-L pathways for potency, synergy, and kinetics of down-regulated T cell activation; and examine DC-HIL knockout mice for phenotypic and functional changes including CH responses. (3) Identify DC-HIL-L on activated T cells by biochemical methods and an expression cloning strategy. Our results are likely to show great promise for DC-HIL and DC-HIL-L as potential therapeutic targets for immunologic or pharmacologic modulation.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-ACTS (01))
Program Officer
Lapham, Cheryl K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Cao, Lauren Y; Chung, Jin-Sung; Teshima, Takahiro et al. (2016) Myeloid-Derived Suppressor Cells in Psoriasis Are an Expanded Population Exhibiting Diverse T-Cell-Suppressor Mechanisms. J Invest Dermatol 136:1801-1810
Turrentine, Jake; Chung, Jin-Sung; Nezafati, Kaveh et al. (2014) DC-HIL+ CD14+ HLA-DR no/low cells are a potential blood marker and therapeutic target for melanoma. J Invest Dermatol 134:2839-2842
Chung, Jin-Sung; Tamura, Kyoichi; Akiyoshi, Hideo et al. (2014) The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells. J Immunol 192:2576-84
Chung, Jin-Sung; Tamura, Kyoichi; Cruz Jr, Ponciano D et al. (2014) DC-HIL-expressing myelomonocytic cells are critical promoters of melanoma growth. J Invest Dermatol 134:2784-2794
Baker, Lauren; Litzner, Brandon; Le, Elizabeth N et al. (2013) Ectopic periorbital dermatitis and mycosis fungoides-like dermatitis due to propolis. Dermatitis 24:328-9
Nezafati, Kaveh A; Carroll, Bryan; Storrs, Frances J et al. (2013) Making contact for contact dermatitis: a survey of the membership of the American Contact Dermatitis Society. Dermatitis 24:47-9
Chung, Jin-Sung; Tomihari, Mizuki; Tamura, Kyoichi et al. (2013) The DC-HIL ligand syndecan-4 is a negative regulator of T-cell allo-reactivity responsible for graft-versus-host disease. Immunology 138:173-82
Das, Shinjita; Ariizumi, Kiyoshi; Cruz Jr, Ponciano D (2012) T-cell inhibitors: a bench-to-bedside review. Dermatitis 23:195-202
Chung, Jin-Sung; Cruz Jr, Ponciano D; Ariizumi, Kiyoshi (2011) Inhibition of T-cell activation by syndecan-4 is mediated by CD148 through protein tyrosine phosphatase activity. Eur J Immunol 41:1794-9
Chung, Jin-Sung; Shiue, Lisa H; Duvic, Madeleine et al. (2011) Sezary syndrome cells overexpress syndecan-4 bearing distinct heparan sulfate moieties that suppress T-cell activation by binding DC-HIL and trapping TGF-beta on the cell surface. Blood 117:3382-90

Showing the most recent 10 out of 14 publications