Interaction of T cells with APCs induces dramatic remodeling of the actin cytoskeleton at the immune synapse. This process is absolutely required for T cell activation, and severe immunodeficiency or autoimmune disease result from mutations in actin regulatory molecules like WASP and HS1. This study will test the central hypothesis that HS1, WIP, and WASP function in a coordinate fashion to orchestrate actin dynamics at the immune synapse, such that each component plays a distinct role in regulating actin architecture, while modulating the function of the others.
In Aim 1, we will ask to what extent these proteins interact directly, and seek to place HS1 in the context of the actin regulatory complex involving WIP, WASP, Itk and Vav. We will ask how these actin regulatory molecules affect one another's stability, targeting and conformation, and analyze movements of fluorescently tagged proteins in living T cells.
In Aim 2, we will conduct functional analyses during T cell activation using cells lacking individual actin regulatory proteins. Video analysis of actin dynamics and EM of cortical actin will be performed to test the idea that WASP and WIP collaborate to drive actin polymerization, while HS1 acts to stabilize actin filaments. In addition, actin- dependent T cell responses ranging from immune synapse formation to proliferation and cytokine production will be assessed.
In Aim 3, we will conduct structure-function analysis of HS1 by expressing mutants in HS1-deficient T cells and assaying actin responses and other aspects-of T cell activation. In addition to testing domains and protein-protein interaction motifs, we will test the function of a lupus-linked insertion polymorphism. Finally, we will analyze HS1 tyrosine phosphorylation, and test the physiological effects of non-phosphorylatable point mutants. Taken together, these studies will advance the field toward a molecular understanding of how actin dynamics at the immune synapse are controlled, and how this process contributes to T cell activation. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI065644-01A2
Application #
7208172
Study Section
Cellular and Molecular Immunology - B Study Section (CMIB)
Program Officer
Mallia, Conrad M
Project Start
2007-01-01
Project End
2011-12-31
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
1
Fiscal Year
2007
Total Cost
$412,500
Indirect Cost
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Comrie, William A; Babich, Alexander; Burkhardt, Janis K (2015) F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J Cell Biol 208:475-91
Huang, Yanping; Clarke, Fiona; Karimi, Mobin et al. (2015) CRK proteins selectively regulate T cell migration into inflamed tissues. J Clin Invest 125:1019-32
Kumari, Sudha; Depoil, David; Martinelli, Roberta et al. (2015) Actin foci facilitate activation of the phospholipase C-? in primary T lymphocytes via the WASP pathway. Elife 4:
Comrie, William A; Li, Shuixing; Boyle, Sarah et al. (2015) The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility. J Cell Biol 208:457-73
Babich, Alexander; Burkhardt, Janis K (2013) Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. Immunol Rev 256:80-94
Hammer 3rd, John A; Burkhardt, Janis K (2013) Controversy and consensus regarding myosin II function at the immunological synapse. Curr Opin Immunol 25:300-6
Ciocca, Maria L; Barnett, Burton E; Burkhardt, Janis K et al. (2012) Cutting edge: Asymmetric memory T cell division in response to rechallenge. J Immunol 188:4145-8
Hsu, Chih-Jung; Hsieh, Wan-Ting; Waldman, Abraham et al. (2012) Ligand mobility modulates immunological synapse formation and T cell activation. PLoS One 7:e32398
Barnett, Burton E; Ciocca, Maria L; Goenka, Radhika et al. (2012) Asymmetric B cell division in the germinal center reaction. Science 335:342-4
Babich, Alexander; Li, Shuixing; O'Connor, Roddy S et al. (2012) F-actin polymerization and retrograde flow drive sustained PLC?1 signaling during T cell activation. J Cell Biol 197:775-87

Showing the most recent 10 out of 13 publications