The ability of a pathogen to breach the highly polarized host mucosal epithelial barrier is an early and critical step in the pathogenesis of microbial infections. This event is particularly crucial for opportunistic pathogens such as Pseudomonas aeruginosa (PA), one of the most virulent opportunistic pathogens of man. Our long-term goals are to understand how pathogens in general, and PA in particular, overcome the host epithelial barrier to cause human disease. PA binds to the apical (AP) surface of polarized epithelial cells and triggers fundamental changes in the host cell that allow bacterial internalization. During this granting period, we have discovered that PA induces a remarkable local change in the morphology of the AP surface to form a membranous protrusion composed of basolateral (BL) constituents. This protrusion is the likely conduit for bacterial entry. This profound shift in the local identity of the AP membrane is the first known morphologic landmark of the effect of PA on epithelial cell monolayers. Based on our data, we hypothesize that PA can exploit small defects in epithelial polarity at the mucosal barrier to initiative a series of events that result in a positive feedback loop induces a remarkable morphologic change in which AP membrane is transformed into BL membrane. A protrusion, with characteristics of a nascent AJ, is formed that functions as a conduit for bacterial entry. By manipulating epithelial cell polarity, PA is able to enhance its bacterial binding and entry, possibly by increasing the presentation of host cell receptors or other factors that promote internalization.
Our aims are to (1) Determine which key regulatory and structural components of TJ and AJ are recruited to the protrusion. (2) Determine the temporal and functional relationship between protrusion formation and bacterial entry. (3) Perform mechanistic studies to uncover how PA hijacks host cell vesicular trafficking to redirect these junctional and BL components to the AP surface. (4) Identify the bacterial determinants of protrusion formation. Together, these studies will comprehensively dissect the interactions between PA and host cell epithelium. They will identify host factors that the bacteria exploit to cause disease. The use of pathogens to study fundamental processes in mammalian biology, such as the establishment and the maintenance of epithelial polarity, has broad ramifications for many fields in addition to pathogenesis, including cancer and developmental biology. Furthermore, these host cell factors may serve as novel targets for the development of anti-bacterial therapeutics;because the drug targets host but not bacterial molecules, they are much less likely to engender resistance compared to conventional anti- microbial therapies.

Public Health Relevance

Pseudomonas aeruginosa is a bacterium that is one of the most frequent causes of infections in hospitalized or immunocompromised patients. Pseudomonas is able to directly enter into cells and this is important in its ability to cause disease. We are investigating the mechanisms by which it enters into cells. This may lead to novel therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
2R01AI065902-06
Application #
7900830
Study Section
Special Emphasis Panel (ZRG1-IDM-A (03))
Program Officer
Korpela, Jukka K
Project Start
2005-05-01
Project End
2014-05-31
Budget Start
2010-06-07
Budget End
2011-05-31
Support Year
6
Fiscal Year
2010
Total Cost
$347,625
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Ruch, Travis R; Bryant, David M; Mostov, Keith E et al. (2017) Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity. Mol Biol Cell 28:252-260
Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik et al. (2014) The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier. PLoS Pathog 10:e1004479
Bucior, Iwona; Tran, Cindy; Engel, Joanne (2014) Assessing Pseudomonas virulence using host cells. Methods Mol Biol 1149:741-55
Tran, Cindy S; Eran, Yoni; Ruch, Travis R et al. (2014) Host cell polarity proteins participate in innate immunity to Pseudomonas aeruginosa infection. Cell Host Microbe 15:636-43
Bucior, Iwona; Abbott, Jason; Song, Yuanlin et al. (2013) Sugar administration is an effective adjunctive therapy in the treatment of Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 305:L352-63
Sana, Thibault G; Hachani, Abderrahman; Bucior, Iwona et al. (2012) The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem 287:27095-105
Bucior, Iwona; Pielage, Julia F; Engel, Joanne N (2012) Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog 8:e1002616
Engel, Joanne; Eran, Yonatan (2011) Subversion of mucosal barrier polarity by pseudomonas aeruginosa. Front Microbiol 2:114
Bucior, Iwona; Mostov, Keith; Engel, Joanne N (2010) Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun 78:939-53
Engel, Joanne; Balachandran, Priya (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12:61-6

Showing the most recent 10 out of 11 publications