Short RNAs, as regulators of cellular function, can impact on the maintenance of genomic integrity and stability, on cell growth, differentiation and developmental processes, and on the antiviral RNA silencing response. RNA silencing refers to small interfering RNA (siRNA)-mediated post- transcriptional gene regulation, resulting in the silencing of viral genes and transgenes. Such host- virus interactions involve highly specific, adaptive, mobile and systemic processes that operate in essence as a RNA-based immune response. siRNAs, made up of 19 to 23 base pair duplexes, with 2-nt S'-overhangs and 5'-phosphates, as part of the RNA-induced silencing complex (RISC), target complimentary viral mRNAs and tag them for degradation. Viruses evolve silencing suppressor proteins to counteract RNA silencing by modifying the accumulation and/or the activity of siRNAs associated with the anti-viral response. This application proposes to continue our ongoing structure-function studies of protein-RNA complexes associated with RISC-mediated RNA silencing, as well as silencing suppression by evolved viral suppressor proteins. Our group has already solved the crystal structures of human PAZ-siRNA and A. fulgidus Piwi-siRNA complexes, of A. aeolicus Argonaute (Ago) in the free and externally siRNA-bound states, as well as the viral suppressors p19 and p21 in the siRNA-bound and free states, respectively. These structures provide a framework for defining additional experiments to decipher the functional states and conformational transitions of bacterial and human Ago's during binding, processing and release of guide RNA and mRNA associated with the RISC-mediated catalytic cycle. It is our expectation that the proposed structural-mutational-functional studies undertaken in collaboration with the Thomas Tuschl laboratory at Rockefeller University will provide unparalleled insights into mechanistic issues associated with individual steps of the RNA silencing pathway. Our initial studies of protein- RNA recognition on the siRNA-binding p19 viral suppressor are being extended to the p21 suppressor, which adopts an octameric ring architecture. Such studies should eventually provide a solid foundation for developing approaches that achieve developmental-stage or tissue-specific expression of viral suppressors, thereby inhibiting cell-specific silencing pathways in plants and animals.
Showing the most recent 10 out of 14 publications