The long-term goal of our research is to understand the molecular and structural basis of key initial events associated with human cytomegalovirus (HCMV) infection, including viral attachment, entry and assembly. HCMV is a leading viral cause of birth abnormalities and a life-threatening pathogen in immunosuppressed individuals. As the most structurally and genetically complex herpesvirus and one of the largest of all viruses, HCMV virion is composed of a glycoprotein-containing envelope, a tegument layer, and an icosahedral, bacteriophage-like capsid enclosing a double-stranded DNA genome. Our preliminary three-dimensional (3D) studies by electron cryomicroscopy (cryoEM) and electron cryotomography (cryoET) showed that HCMV tegument exhibits striking structural differences from other herpesviruses despite sharing a similar capsid and capsid assembly mechanism. Despite of its medical significances, little is known about the structures of HCMV tegument and glycoproteins owing largely to the lack of usable structural tools for such systems. We hypothesize that HCMV tegument and envelope proteins, as well as domains of the capsid proteins interacting with the tegument, have HCMV-specific structural and functional roles. The proposed research employs the newly emerging cryoET technology and harnesses the investigator's unique expertise in high-resolution cryoEM to tackle this important, vet under-investigated subject of HCMV infection. We will focus our research on visualizing key initial events of HCMV infection and molecular interactions essential to tegument assembly in 3D.
Our aims are (1) to determine the structural and functional role of HCMV-specific tegument protein, pp150; (2) to identify the structural elements of major capsid protein that interact with SCP and pp150 by determining 5-7-A resolution structures of naked and tegumented HCMV capsids using cryoEM and structure-based mutagenesis; (3) to localize and determine the morphology of major envelope proteins, particularly glycoprotein B (gB) and gH and their interactions with receptors, by cryoET with antibody-labeling; and (4) to construct a 3D atlas of molecular interactions during HCMV attachment and entry by reconstructing 3D views of thin-sections of HCMV-infected cells. The results will be a series of much-needed 3D maps of HCMV entry and assembly at an unprecedented level of detail. Such new information will lead to better understanding of HCMV infection and ultimately benefit efforts of therapeutic intervention. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI069015-01A1
Application #
7208519
Study Section
Special Emphasis Panel (ZRG1-IDM-B (02))
Program Officer
Beisel, Christopher E
Project Start
2007-03-15
Project End
2007-08-31
Budget Start
2007-03-15
Budget End
2007-08-31
Support Year
1
Fiscal Year
2007
Total Cost
$310,354
Indirect Cost
Name
University of Texas Health Science Center Houston
Department
Pathology
Type
Schools of Medicine
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Liu, Yun-Tao; Jiang, Jiansen; Bohannon, Kevin Patrick et al. (2017) A pUL25 dimer interfaces the pseudorabies virus capsid and tegument. J Gen Virol 98:2837-2849
Zhou, Z Hong (2014) Structures of viral membrane proteins by high-resolution cryoEM. Curr Opin Virol 5:111-9
Dai, Xinghong; Zhou, Z Hong (2014) Purification of Herpesvirus Virions and Capsids. Bio Protoc 4:
Sathiyamoorthy, Karthik; Jiang, Jiansen; Hu, Yao Xiong et al. (2014) Assembly and architecture of the EBV B cell entry triggering complex. PLoS Pathog 10:e1004309
Yang, Kui; Wills, Elizabeth; Lim, Han Young et al. (2014) Association of herpes simplex virus pUL31 with capsid vertices and components of the capsid vertex-specific complex. J Virol 88:3815-25
Hong, Kyungah; Upton, Heather; Miracco, Edward J et al. (2013) Tetrahymena telomerase holoenzyme assembly, activation, and inhibition by domains of the p50 central hub. Mol Cell Biol 33:3962-71
Jiang, Jiansen; Miracco, Edward J; Hong, Kyungah et al. (2013) The architecture of Tetrahymena telomerase holoenzyme. Nature 496:187-92
Dai, Xinghong; Yu, Xuekui; Gong, Hao et al. (2013) The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus. PLoS Pathog 9:e1003525
Hughes, Louise C; Ralston, Katherine S; Hill, Kent L et al. (2012) Three-dimensional structure of the Trypanosome flagellum suggests that the paraflagellar rod functions as a biomechanical spring. PLoS One 7:e25700
Zhang, Xing; Guo, Huatao; Jin, Lei et al. (2012) Atomic Structure of Bordetella Bacteriophage Reveals a Jellyroll Fold in CementProtein and a Topologically Distinct HK97-like Fold in Major Capsid Protein. Microsc Microanal 18:72-73

Showing the most recent 10 out of 43 publications