Invasive infections due to Aspergillus fumigatus are increasing, and despite new therapies are associated with greater than 50% mortality. During the pathogenesis of invasive aspergillosis, the organism interacts with several types of host cells, including pulmonary epithelial cells and endothelial cells. After being inhaled, A. fumigatus conidia adhere to and are internalized by the pulmonary epithelial cells that line the alveoli. In susceptible hosts, these conidia then germinate to form hyphae, which exit the pulmonary epithelial cells and invade the deeper tissues, most notably pulmonary blood vessels. Within these blood vessels, hyphae interact with vascular endothelial cells in two unique ways. First, hyphae from an infectious focus invade the abluminal surface of the blood vessel and then penetrate endothelial cells to gain access to the blood vessel lumen. Next, hyphal fragments are borne by the bloodstream to distal sites where they adhere to and penetrate the luminal surface of the endothelial cells and then invade the deep organs. To date, little is known about the genetic control of A. fumigatus virulence traits that influence the interactions of the organism with these host cells. In other pathogenic fungi, the conserved signal transduction pathways that control fungal morphogenesis and growth are also key regulators of virulence traits. Data from our group and others suggest that this paradigm holds true for A fumigatus. Thus, we hypothesize that the interactions of A fumigatus with pulmonary epithelial cells and the vascular endothelium are both developmental^ regulated and critical to the pathogenesis of invasive aspergillosis. Towards this end, we have identified a number of A fumigatus transcription factors predicted to govern fungal development. Mutants that are deficient in these candidate genes have been constructed. We have also developed animal and in vitro model systems to investigate the interaction of these mutants with epithelial and endothelial cells in a physiologically relevant manner. We hypothesize that these mutants will have abnormal development, aberrant interactions with host cells, and attenuated virulence. We will test this hypothesis by 1) determining the role of candidate transcription factors in the development and morpho- genesis of A fumigatus;2) investigating the interactions of mutants deficient in candidate transcription factors with pulmonary epithelial cells and vascular endothelial cells in vitro;3) characterizing the ability of a subset of these candidate transcription factors to modulate virulence and host response using murine models of invasive aspergillosis;and 4) identifying the downstream genes whose expression is regulated by candidate transcription factors that we find govern host cell interactions and virulence. These investigations will establish the roles of previously unexplored A. fumigatus transcription factors in governing development, host cell interactions, and virulence. They will also identify new genes that specify clearly defined, biologically relevant A fumigatus virulence traits. Collectively, these results will form the foundation for the future development of new therapeutic strategies for invasive aspergillosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI073829-05
Application #
8059655
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Duncan, Rory A
Project Start
2007-05-01
Project End
2012-06-14
Budget Start
2011-05-01
Budget End
2012-06-14
Support Year
5
Fiscal Year
2011
Total Cost
$319,877
Indirect Cost
Name
La Biomed Research Institute/ Harbor UCLA Medical Center
Department
Type
DUNS #
069926962
City
Torrance
State
CA
Country
United States
Zip Code
90502
Voltersen, Vera; Blango, Matthew G; Herrmann, Sahra et al. (2018) Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus Aspergillus fumigatus. MBio 9:
Lee, Mark J; Sheppard, Donald C (2016) Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol 54:232-42
Liu, Hong; Lee, Mark J; Solis, Norma V et al. (2016) Aspergillus fumigatus CalA binds to integrin ?5?1 and mediates host cell invasion. Nat Microbiol 2:16211
Lee, Mark J; Geller, Alexander M; Bamford, Natalie C et al. (2016) Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation. MBio 7:e00252-16
Pongpom, Monsicha; Liu, Hong; Xu, Wenjie et al. (2015) Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease. Infect Immun 83:923-33
Lee, Mark J; Liu, Hong; Barker, Bridget M et al. (2015) The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathog 11:e1005187
Lee, Mark J; Gravelat, Fabrice N; Cerone, Robert P et al. (2014) Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J Biol Chem 289:1243-56
Sheppard, Donald C; Filler, Scott G (2014) Host cell invasion by medically important fungi. Cold Spring Harb Perspect Med 5:a019687
Gebremariam, Teclegiorgis; Liu, Mingfu; Luo, Guanpingsheng et al. (2014) CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest 124:237-50
Bertuzzi, Margherita; Schrettl, Markus; Alcazar-Fuoli, Laura et al. (2014) The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 10:e1004413

Showing the most recent 10 out of 28 publications