HIV-1 infection depends on a series of molecular events involving biochemical interactions between viral components and host factors, resulting in fusion of viral and host membranes, reverse transcription, uncoating, nuclear entry, and integration. A key knowledge gap in the early stages of infection is the role of the viral capsid i facilitating reverse transcription. Mutations in the CA protein that destabilize the viral capsid result in impaired reverse transcription, indicating that the integrity of the viral capsid is critcal for efficient viral DNA synthesis. HIV-1 reverse transcriptase is a low processivity enzyme and dissociates from the template during strand transfer steps of reverse transcription. Employing a biochemical approach involving purified HIV-1 cores, we will test the hypothesis that the viral capsid serves as a vessel to maintain the local concentration of RT during reverse transcription and will study the role of restrictive host factors in HIV-1 capsid recognition and uncoating. We will also identify novel host factors that bind the HIV-1 capsid. The work will be organized by the following Specific Aims:
Aim 1. To determine the mechanism by which the viral capsid facilitates HIV-1 reverse transcription.
Aim 2. Identification of intersubunit interfaces critical for HIV-1 uncoating.
Aim 3. To determine the effect of CPSF6-358 on HIV-1 uncoating.
Aim 4. To determine the stoichiometric requirement for functional capsid recognition by TRIM5 restriction factors.
Aim 5. Identification of novel capsid-interacting host factors. These studies will answer fundamental question in retrovirus biology and will clarify the mechanisms of restriction by endogenous host cell factors.

Public Health Relevance

HIV/AIDS remains a global epidemic and public health threat. Despite the development of effective antiretroviral drugs, therapy is not curative and is therefore life-long. A detailed understanding of the uncoating step in HIV-1 infection will lead to the development of an improved therapeutic arsenal and novel insights into interactions between the virus and its cellular targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
4R01AI076121-08
Application #
9017905
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Kuo, Lillian S
Project Start
2008-03-15
Project End
2016-04-30
Budget Start
2016-03-01
Budget End
2016-04-30
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Pathology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37240
Carnes, Stephanie K; Zhou, Jing; Aiken, Christopher (2018) HIV-1 Engages a Dynein-Dynactin-BICD2 Complex for Infection and Transport to the Nucleus. J Virol :
Burse, Mallori; Shi, Jiong; Aiken, Christopher (2017) Cyclophilin A potentiates TRIM5? inhibition of HIV-1 nuclear import without promoting TRIM5? binding to the viral capsid. PLoS One 12:e0182298
Rankovic, Sanela; Varadarajan, Janani; Ramalho, Ruben et al. (2017) Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly. J Virol 91:
Henning, Matthew S; Dubose, Brittany N; Burse, Mallori J et al. (2014) In vivo functions of CPSF6 for HIV-1 as revealed by HIV-1 capsid evolution in HLA-B27-positive subjects. PLoS Pathog 10:e1003868
Mathew, Sheeba; Nguyen, Minh; Wu, Xuhong et al. (2013) INI1/hSNF5-interaction defective HIV-1 IN mutants exhibit impaired particle morphology, reverse transcription and integration in vivo. Retrovirology 10:66
Shah, Vaibhav B; Shi, Jiong; Hout, David R et al. (2013) The host proteins transportin SR2/TNPO3 and cyclophilin A exert opposing effects on HIV-1 uncoating. J Virol 87:422-32
Shah, Vaibhav B; Aiken, Christopher (2013) Cell Fractionation and Quantitative Analysis of HIV-1 Reverse Transcription in Target Cells. Bio Protoc 3:
Shi, Jiong; Friedman, David B; Aiken, Christopher (2013) Retrovirus restriction by TRIM5 proteins requires recognition of only a small fraction of viral capsid subunits. J Virol 87:9271-8
Yufenyuy, Ernest L; Aiken, Christopher (2013) The NTD-CTD intersubunit interface plays a critical role in assembly and stabilization of the HIV-1 capsid. Retrovirology 10:29
Yu, Zhiheng; Dobro, Megan J; Woodward, Cora L et al. (2013) Unclosed HIV-1 capsids suggest a curled sheet model of assembly. J Mol Biol 425:112-23

Showing the most recent 10 out of 22 publications