Three major worldwide foci of the fatal parasitic disease visceral leishmaniasis (cVL) occur in India, Sudan and Brazil. 80-90% of human infections are sub-clinical or asymptomatic, usually associated with strong cell-mediated immunity which can result in a positive skin-test delayed type hypersensitivity test (DTH+) to leishmanial antigen. The goal of this project is to understand why individuals with the same exposure to leishmaniasis experience different outcomes of infection. Prior genetic studies of cVL have been underpowered to examine candidate genes with confidence, or to find all genes influencing the complex phenotypes of cVL or DTH response. We have now accumulated sample sizes of sufficient power to carry out hypothesis-driven candidate gene allelic association studies with confidence, and to perform SNP-chip based genome-wide association scans (GWAS). Indeed, primary SNP-chip based genome-wide association scans (GWAS) of cVL from India and cVL/DTH response in Brazil will be completed during 2008/9.
Aims of this RO1 are: 1. To test the hypothesis that candidate genes (SLC11A1, IL4-LECT2/TGFBI, HLA) determine susceptibility to cVL and to asymptomatic infection (DTH+) using dense tag-SNPs, with sample sizes that are sufficiently powered to study these complex disease phenotypes. 2. To identify novel susceptibility genes and associated functional etiological variants by validating the positive results of the population-based primary GWAS being performed on 1000 cVL cases and 1000 controls from India, using dense tag-SNP family-based allelic association tests that control for ethnicity in 1217 extended cVL families, re-sequencing, bioinformatic analysis, and mRNA and protein expression analysis. 3. To identify novel susceptibility and resistance genes and associated functional etiological variants, by validating results of the family-based primary GWAS being performed on individuals with cVL (626), DTH+ (1160) or DTH- (900) phenotypes in Brazilian families, using dense tag-SNP family-based allelic association, re-sequencing, bioinformatic analysis, and mRNA and protein expression analysis. A major aim of genetic studies is to identify genes/mechanisms/pathways that contribute to the pathogenesis of disease. Pathway analysis of genes validated by the above studies will be used to define immunological, biochemical and molecular pathways that are important in the pathogenesis of cVL. This study has the potential to demonstrate that the same molecular pathways are important across different geographic regions/Leishmania species, and also to discover specific genetic polymorphisms that provide population-specific susceptibility to disease. The study could seed novel functional studies that could translate into future disease intervention measures.

Public Health Relevance

The fatal parasitic disease visceral leishmaniasis occurs in only a subset of people exposed to the Leishmania parasite. The goal of this project is use a genetic approach to determine why individuals with the same exposure experience different outcomes of infection. The study will define genes and pathways that determine disease susceptibility, which could translate into future disease intervention measures.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI076233-02
Application #
7915433
Study Section
Clinical Research and Field Studies of Infectious Diseases Study Section (CRFS)
Program Officer
Rao, Malla R
Project Start
2009-08-15
Project End
2014-07-31
Budget Start
2010-08-01
Budget End
2011-07-31
Support Year
2
Fiscal Year
2010
Total Cost
$319,275
Indirect Cost
Name
University of Iowa
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Marshall, Skye; Kelly, Patrick H; Singh, Brajesh K et al. (2018) Extracellular release of virulence factor major surface protease via exosomes in Leishmania infantum promastigotes. Parasit Vectors 11:355
Teixeira, D G; Monteiro, G R G; Martins, D R A et al. (2017) Comparative analyses of whole genome sequences of Leishmania infantum isolates from humans and dogs in northeastern Brazil. Int J Parasitol 47:655-665
Rodríguez, N E; Lockard, R D; Turcotte, E A et al. (2017) Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol 39:
Kelly, Patrick H; Bahr, Sarah M; Serafim, Tiago D et al. (2017) The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. MBio 8:
Weirather, Jason L; Duggal, Priya; Nascimento, Eliana L et al. (2017) Comprehensive candidate gene analysis for symptomatic or asymptomatic outcomes of Leishmania infantum infection in Brazil. Ann Hum Genet 81:41-48
Sharma, Smriti; Srivastva, Shweta; Davis, Richard E et al. (2017) The Phenotype of Circulating Neutrophils during Visceral Leishmaniasis. Am J Trop Med Hyg 97:767-770
Scorza, Breanna M; Carvalho, Edgar M; Wilson, Mary E (2017) Cutaneous Manifestations of Human and Murine Leishmaniasis. Int J Mol Sci 18:
Clay, Gwendolyn M; Valadares, Diogo G; Graff, Joel W et al. (2017) An Anti-Inflammatory Role for NLRP10 in Murine Cutaneous Leishmaniasis. J Immunol 199:2823-2833
Davis, Richard E; Sharma, Smriti; Conceição, Jacilara et al. (2017) Phenotypic and functional characteristics of HLA-DR+ neutrophils in Brazilians with cutaneous leishmaniasis. J Leukoc Biol 101:739-749
Davis, R E; Thalhofer, C J; Wilson, M E (2016) Infection and Activation of Human Neutrophils with Fluorescent Leishmania infantum. J Immunol Tech Infect Dis 5:

Showing the most recent 10 out of 47 publications