The spore-forming bacterium Bacillus anthracis causes anthrax, and is classified as one of six Category A agents considered as major threats as a bioweapon. Because of its pivotal role in disease pathogenesis, a number of strategies to inhibit anthrax toxin are currently under development, including monoclonal antibody- based therapies. However, there is significant concern about the ease with which the bacterium may be engineered to avoid vaccine protection or antitoxin therapy, e.g. by removing antibody-binding sites from the protective antigen (PA) toxin subunit. A next-generation strategy for antitoxin development, one that addresses this limitation, involves the use of a soluble receptor decoy inhibitor (RDI);Presumably PA cannot be engineered to evade cellular receptor recognition and therefore the RDI should be effective even against forms of PA that have been deliberately altered to resist antibody neutralization. We have recently developed an RDI which has many properties desirable in a broadly acting anthrax therapeutic: it binds to the receptor-binding site of PA with an affinity that is on a par with some of the leading therapeutic antibodies (Kd = 0.2nM);it blocks intoxication via both known cellular receptors for anthrax toxin;its dissociation rate from PA is extremely slow (t1/2 complex = 15 hours);it is non-immunogenic;its production is easily scaleable using a bacterial expression system;it can neutralize PA at stoichiometric concentrations and protects rats against toxin killing. This research plan represents a comprehensive strategy for advancing the RDI as a candidate therapy for anthrax. We will characterize and optimize its pharmacokinetic properties by disrupting its interaction with its physiological ligands (collagen IV and laminin), and by exploiting PEGylation and Ig fusion protein approaches. We will also establish if this class of inhibitor is effective at neutralizing antibody-resistant forms of PA, as expected. Moreover, we will establish if this class of inhibitor can prevent disease in mice caused by Sterne spores that express either wild-type or antibody-resistant PA. These experiments will set the stage for future studies aimed at establishing the effectiveness of the RDI in preventing disease caused by highly virulent strains of B. anthracis. We anticipate that the RDI will be a useful adjunct anthrax therapy that could potentially synergize with monoclonal antibodies to treat infections caused by wild-type bacterial strains while at the same time providing a straightforward strategy for dealing with engineered, weaponized bacterial strains.

Public Health Relevance

Anthrax represents one of the greatest bioterrorism threats to the citizens of the United States. The aim of the proposed research is to develop a soluble therapeutic that will be effective against common strains of the bacterium that causes anthrax as well as against weaponized bacterial strains.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Drug Discovery and Mechanisms of Antimicrobial Resistance Study Section (DDR)
Program Officer
Xu, Zuoyu
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Salk Institute for Biological Studies
La Jolla
United States
Zip Code
Thomas, Diane; Naughton, John; Cote, Christopher et al. (2012) Delayed toxicity associated with soluble anthrax toxin receptor decoy-Ig fusion protein treatment. PLoS One 7:e34611
Pilpa, Rosemarie M; Bayrhuber, Monika; Marlett, John M et al. (2011) A receptor-based switch that regulates anthrax toxin pore formation. PLoS Pathog 7:e1002354
Reeves, C V; Dufraine, J; Young, J A T et al. (2010) Anthrax toxin receptor 2 is expressed in murine and tumor vasculature and functions in endothelial proliferation and morphogenesis. Oncogene 29:789-801
Sharma, Shilpi; Thomas, Diane; Marlett, John et al. (2009) Efficient neutralization of antibody-resistant forms of anthrax toxin by a soluble receptor decoy inhibitor. Antimicrob Agents Chemother 53:1210-2
Schneemann, Anette; Manchester, Marianne (2009) Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax. Future Microbiol 4:35-43
van der Goot, Gisou; Young, John A T (2009) Receptors of anthrax toxin and cell entry. Mol Aspects Med 30:406-12