Disease caused by the obligate intracellular parasite Toxoplasma gondii is inherently linked to fast replication cycles of the tachyzoite life stage. Tachyzoite division produces two daughters per division round, which are assembled within the mother cell through a unique 'internal budding'process. Assembly of the peripheral cytoskeleton drives budding and serves as a scaffold for organelle assemblage and segregation. The cytoskeleton is composed of microtubules together with two unique elements not shared with the host (intermediate filaments in complex with flattened vesicles together called the inner membrane complex or IMC). This proposal aims to characterize a unique component of the replication machinery, the intermediate filament cytoskeleton. To date, four different filament genes have been studied (TgIMC1-4), but a preliminary genomic survey identified 16 genes in total. Preliminary studies of several filaments throughout development identified a surprising spectrum in behavior and hint at a thus far underappreciated sophistication of the intermediate cytoskeleton. Therefore the research team proposes to assess the localization, post-translation modification, and proteolytic processing of all 16 genes throughout parasites division (Aim 1). Furthermore, preliminary data identifies protein TgMORN1 as a central organizer between two filament structures (the IMC and the posterior cup), which also provides a scaffold for the constriction of the cytoskeleton during maturation. The pivotal role of TgMORN1 will be further dissected by identifying the proteins in the large TgMORN1 complex (Aim 2). Finally, we want to construct a model of the process wherein morphological changes during the division process can be linked to biochemical events (Aim 3). Upon completion of this proposal, understanding on the who, when, where and how of the assembly, maturation, stability and turnover of the intermediate filament cytoskeleton will allow predictions on how to best interfere with division, providing a rational basis for development of new therapeutics to treat toxoplasmosis.

Public Health Relevance

Limited treatment options are available to treat disease caused by Apicomplexa. We propose to study the internal budding process of the model parasite Toxoplasma gondii, in particular the contribution of the intermediate filament cytoskeleton, and identify the (unique) proteins in the cell division machinery providing potential new specific drug targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI081924-01
Application #
7635058
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
2009-07-01
Project End
2013-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
1
Fiscal Year
2009
Total Cost
$352,125
Indirect Cost
Name
Boston College
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
045896339
City
Chestnut Hill
State
MA
Country
United States
Zip Code
02467
Dubey, Rashmi; Staker, Bart L; Foe, Ian T et al. (2017) Membrane skeletal association and post-translational allosteric regulation of Toxoplasma gondii GAPDH1. Mol Microbiol 103:618-634
Dubey, Rashmi; Harrison, Brooke; Dangoudoubiyam, Sriveny et al. (2017) Differential Roles for Inner Membrane Complex Proteins across Toxoplasma gondii and Sarcocystis neurona Development. mSphere 2:
Weidner, Jessica M; Kanatani, Sachie; Uchtenhagen, Hannes et al. (2016) Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14-3-3 protein. Cell Microbiol 18:1537-1550
Berry, Laurence; Chen, Chun-Ti; Reininger, Luc et al. (2016) The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence. Cell Microbiol 18:1106-1120
Skariah, S; Walwyn, O; Engelberg, K et al. (2016) The FIKK kinase of Toxoplasma gondii is not essential for the parasite's lytic cycle. Int J Parasitol 46:323-32
Engelberg, Klemens; Ivey, F Douglas; Lin, Angela et al. (2016) A MORN1-associated HAD phosphatase in the basal complex is essential for Toxoplasma gondii daughter budding. Cell Microbiol 18:1153-71
Blader, Ira J; Coleman, Bradley I; Chen, Chun-Ti et al. (2015) Lytic Cycle of Toxoplasma gondii: 15 Years Later. Annu Rev Microbiol 69:463-85
Chen, Chun-Ti; Gubbels, Marc-Jan (2015) Apicomplexan cell cycle flexibility: centrosome controls the clutch. Trends Parasitol 31:229-30
Chen, Chun-Ti; Kelly, Megan; Leon, Jessica de et al. (2015) Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation. Mol Biol Cell 26:4562-76
Brown, Kevin M; Suvorova, Elena; Farrell, Andrew et al. (2014) Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases. PLoS Pathog 10:e1004180

Showing the most recent 10 out of 20 publications