We study Salmonella-host interactions and have shown that the mammalian inflammasome, an innate immune protective complex that mediates a pro-inflammatory host response, is important for controlling S. typhimurium infection. The long-term goal of this research application is to understand how the host recognizes intracellular S. typhimurium and how this pathogen has evolved to subvert innate immune defenses. We have demonstrated that multiple host cytosolic sensors are involved in recognizing intracellular S. typhimurium and activating the inflammasome. In addition, we have shown that multiple caspase-1 complexes are formed in response to intracellular S. typhimurium.
In Aim1, we will use genetic and biochemical approaches to identify new host molecules and pathways involved in caspase- 1-dependent maturation and release of pro-inflammatory cytokines.
In Aim 2, we will take biochemical and genetic approaches to identify host molecules and pathways involved in caspase-1-induced macrophage death.
In Aim 3, we will characterize the spatial and temporal relationships between caspase-1 complex formation, cytokine release and host cell death. These studies are aimed at gaining a better understanding of the molecular mechanisms of intracellular recognition, which will lead to the rational design of therapeutics that will benefit public health.

Public Health Relevance

The proposed research is relevant to public health because an increased understanding of the mechanisms that lead to the activation of the inflammasome when our immune system recognizes intracellular bacterial pathogens, such as Salmonella, will lead to novel therapeutic avenues. Thus, the proposed research is relevant to NIH's mission that pertains to developing fundamental knowledge that will reduce the burdens of human infectious disease.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Alexander, William A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Napier, Brooke A; Monack, Denise M (2017) Editorial: The sum of all defenses: tolerance + resistance. Pathog Dis 75:
Napier, Brooke A; Monack, Denise M (2017) Creating a RAW264.7 CRISPR-Cas9 Genome Wide Library. Bio Protoc 7:
Sastalla, Inka; Monack, Denise M; Kubatzky, Katharina F (2016) Editorial: Bacterial Exotoxins: How Bacteria Fight the Immune System. Front Immunol 7:300
Napier, Brooke A; Brubaker, Sky W; Sweeney, Timothy E et al. (2016) Complement pathway amplifies caspase-11-dependent cell death and endotoxin-induced sepsis severity. J Exp Med 213:2365-2382
Napier, Brooke A; Monack, Denise M (2016) IMMUNOLOGY. A lipid arsenal to control inflammation. Science 352:1173-4
Kortmann, Jens; Brubaker, Sky W; Monack, Denise M (2015) Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin. J Immunol 195:815-9
Storek, Kelly M; Monack, Denise M (2015) Bacterial recognition pathways that lead to inflammasome activation. Immunol Rev 265:112-29
Storek, Kelly M; Gertsvolf, Nina A; Ohlson, Maikke B et al. (2015) cGAS and Ifi204 cooperate to produce type I IFNs in response to Francisella infection. J Immunol 194:3236-45
Carden, Sarah; Okoro, Chinyere; Dougan, Gordon et al. (2015) Non-typhoidal Salmonella Typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis. Pathog Dis 73:

Showing the most recent 10 out of 20 publications