Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. Pathogenic clinical strains o CMV differ from lab adapted strains in that they retain the ability to infect epithelial and endothelial cells. Based on the structure of the placenta endothelial cells could be a potentially important site for initiation of virus transfer across the placenta to the fetus. The mechanism of virus entry into epi/endothelial cells is different from the gB pathway of entry into fibroblast cels as it requires viral proteins gH/gL/UL128-131 forming an endocytic complex to enable viral cell entry. The guinea pig is the only small animal model that allows the study of congenital CMV by using species specific guinea pig CMV (GPCMV). We recently investigated the use of a replication-impaired live GPCMV vaccine that requires a complementing cell line for production of infectious virus. This disabled infectious single cycle (DISC) vaccine strategy results in a virs that can infect cells to express an array of viral antigens and induce an immune response but does not produce infectious virus. This vaccine strategy was highly immunogenic in guinea pigs producing antibody and T cell responses to important viral antigens. However, our original DISC vaccine lacked a newly identified homolog locus to human CMV UL128-131 (GP128-131). Consequently, this vaccine strategy lacks the ability to generate an immune response against a potential GPCMV endocytic complex. In this application we propose to define requirements for GPCMV entry into endothelial cells and additionally develop a 2nd generation DISC vaccine carrying the essential antigens necessary to induce an effective neutralizing immune response against viral infection of epi/endothelial cells. As part of this 2nd generation DISC vaccine strategy the virus will be further attenuated to increase immunogenicity and decrease the ability of the virus to establish latency by the knockout of the pp71 homolog. The ability of second generation DISC vaccines to protect against congenital GPCMV will be investigated and efficacy determined by comparing it with a recombinant gB vaccine strategy previously investigated in this model.

Public Health Relevance

Cytomegalovirus (CMV) is a ubiquitous pathogen that causes significant mortality and morbidity in immunocompromised populations including transplant and AIDS patients and the fetus in utero. Congenital CMV infection causes mental retardation and deafness in surviving newborn. CMV is the most common AIDS related secondary infection. There is no vaccine to CMV. Although current antivirals are available for transplant and AIDS patients these result in the emergence of resistant strains that cause disease. Additionally, antiviral drug toxic side effects preclude their use in the prevention of congenital CMV.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI098984-05
Application #
8890091
Study Section
Vaccines Against Microbial Diseases Study Section (VMD)
Program Officer
Beisel, Christopher E
Project Start
2012-07-01
Project End
2017-06-30
Budget Start
2015-07-01
Budget End
2017-06-30
Support Year
5
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Texas A&M University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
835607441
City
College Station
State
TX
Country
United States
Zip Code
77845
Coleman, Stewart; Choi, K Yeon; McGregor, Alistair (2017) Cytomegalovirus UL128 homolog mutants that form a pentameric complex produce virus with impaired epithelial and trophoblast cell tropism and altered pathogenicity in the guinea pig. Virology 509:205-221
Hornig, Julia; Choi, K Yeon; McGregor, Alistair (2017) The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting. Virology 504:122-140
Choi, K Yeon; Root, Matthew; McGregor, Alistair (2016) A Novel Non-Replication-Competent Cytomegalovirus Capsid Mutant Vaccine Strategy Is Effective in Reducing Congenital Infection. J Virol 90:7902-19
Coleman, Stewart; Choi, K Yeon; Root, Matthew et al. (2016) A Homolog Pentameric Complex Dictates Viral Epithelial Tropism, Pathogenicity and Congenital Infection Rate in Guinea Pig Cytomegalovirus. PLoS Pathog 12:e1005755
Coleman, Stewart; Hornig, Julia; Maddux, Sarah et al. (2015) Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus. PLoS One 10:e0135567
Coleman, Stewart M; McGregor, Alistair (2015) A bright future for bioluminescent imaging in viral research. Future Virol 10:169-183
Hornig, Julia; McGregor, Alistair (2014) Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach. Expert Opin Drug Discov 9:891-915
Schleiss, Mark R; Buus, Ryan; Choi, K Yeon et al. (2013) An Attenuated CMV Vaccine with a Deletion in Tegument Protein GP83 (pp65 Homolog) Protects against Placental Infection and Improves Pregnancy Outcome in a Guinea Pig Challenge Model. Future Virol 8:1151-1160