Microbial pathogens utilize virulence factors to subvert or counteract the innate immune response of the host. In turn, the host can exploit the presence of virulence factors to detect pathogens and mount a protective adaptive immune response. Understanding this dual nature of virulence factors remains a goal in the fields of microbial pathogenesis and immunology. Because many pathogens encode multiple virulence factors, an additional important goal is to determine if alteration of innate responses by one virulence factor can shape adaptive immunity to another virulence factor. A multi-factorial virulence mechanism known as type III secretion that is conserved in a large number of Gram-negative bacteria that cause important human diseases is being studied. The type III secretion system (T3SS) functions to deliver effector proteins into host cells. The effector proteins regulate innate and adaptive immune responses to promote bacterial infection and virulence. A T3SS that is critical for virulence in the bacterial pathogen Yersinia, which causes human diseases ranging from plague to gastroenteritis, is the focus of the project. A mouse infection model is used to gain insights into mechanisms used by effectors to subvert innate immune responses. The same infection model is used to understand how the host exploits effectors to generate a protective adaptive immune response. Two observations form the basis of the project. First, the YopM effector is required for production of high systemic levels of the immunosuppressive cytokine IL-10 during the innate immune response in mice infected with Yersinia. Second, mice that survive infection with Yersinia generate a dominant CD8 T cell response to a protective epitope in the effector YopE. The project will address three questions. First, how does YopM induce high systemic levels of IL-10 and does this process contribute to pathogenesis? Second, how do YopE- specific CD8 T cells protect and what features of YopE are important for generating this response? Third, does induction of IL-10 by YopM delay or decrease the generation of a CD8 T cell response to YopE? Successful completion of this project will lead to better understanding of how the interplay between multiple virulence factors in a pathogen can impact the outcome of the host immune response. The knowledge gained from these basic research studies will impact the fields of microbial pathogenesis and immunology, and could be translated into applications such as the development of novel live vaccines that effectively prime adaptive immunity.

Public Health Relevance

This basic research project seeks to understand how microbial virulence factors can play a duel role in response of the immune system to infection. Virulence factors can function to subvert or counteract the innate immune response of the host. Alternatively, the host can exploit the presence of virulence factors to detect pathogens and mount a protective adaptive immune response. Understanding this dual nature of virulence factors in the context of a multi-factorial mechanism remains a major challenge in the fields of microbial pathogenesis and immunology. Successful completion of the project will increase our knowledge of virulence mechanisms of pathogens and of the basic workings of the immune system, as well as lead to the development of more effective vaccines that can be used to protect the public against infectious diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Project (R01)
Project #
Application #
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Alexander, William A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Schools of Medicine
Stony Brook
United States
Zip Code
Kim, JiHyun; Fukuto, Hana S; Brown, Deborah A et al. (2018) Effects of host cell sterol composition upon internalization of Yersinia pseudotuberculosis and clustered ?1 integrin. J Biol Chem 293:1466-1479
Zhang, Yue; Khairallah, Camille; Sheridan, Brian S et al. (2018) CCR2+ Inflammatory Monocytes Are Recruited to Yersinia pseudotuberculosis Pyogranulomas and Dictate Adaptive Responses at the Expense of Innate Immunity during Oral Infection. Infect Immun 86:
Han, Seong-Ji; Glatman Zaretsky, Arielle; Andrade-Oliveira, Vinicius et al. (2017) White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection. Immunity 47:1154-1168.e6
Zwack, Erin E; Feeley, Eric M; Burton, Amanda R et al. (2017) Guanylate Binding Proteins Regulate Inflammasome Activation in Response to Hyperinjected Yersinia Translocon Components. Infect Immun 85:
Schoberle, Taylor J; Chung, Lawton K; McPhee, Joseph B et al. (2016) Uncovering an Important Role for YopJ in the Inhibition of Caspase-1 in Activated Macrophages and Promoting Yersinia pseudotuberculosis Virulence. Infect Immun 84:1062-1072
Chung, Lawton K; Park, Yong Hwan; Zheng, Yueting et al. (2016) The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome. Cell Host Microbe 20:296-306
Chung, Lawton K; Bliska, James B (2016) Yersinia versus host immunity: how a pathogen evades or triggers a protective response. Curr Opin Microbiol 29:56-62
Solomon, Rebecca; Zhang, Weibing; McCrann, Grace et al. (2015) Random mutagenesis identifies a C-terminal region of YopD important for Yersinia type III secretion function. PLoS One 10:e0120471
Zhang, Yue; Tam, Jason W; Mena, Patricio et al. (2015) CCR2+ Inflammatory Dendritic Cells and Translocation of Antigen by Type III Secretion Are Required for the Exceptionally Large CD8+ T Cell Response to the Protective YopE69-77 Epitope during Yersinia Infection. PLoS Pathog 11:e1005167
Wang, Xiaoying; Parashar, Kaustubh; Sitaram, Ananya et al. (2014) The GAP activity of type III effector YopE triggers killing of Yersinia in macrophages. PLoS Pathog 10:e1004346

Showing the most recent 10 out of 15 publications