Bacterial pathogens must avoid clearance by the immune system to establish infection, yet many mechanisms of bacterial immune subversion remain undefined. A number of bacterial pathogens subvert pathways of the innate immune system, but how bacterial pathogens overcome pathways of the adaptive immune system is not well understood. T cells are a key component of the adaptive immune system and are required for protective immunity against many bacterial pathogens. Salmonella enterica serovar Typhimurium (S. typhimurium) are pathogenic bacteria that inhibit the response of T cells directly, but the factor responsible for this inhibition has not been identified. We recently showe that S. typhimurium inhibit T cell responses by producing L- asparaginase II, which hydrolyzes L-asparagine. L-asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production and proliferation, and to down-modulate expression of the T cell receptor. Furthermore, S. typhimurium-induced inhibition of T cells in vitro is prevented upon addition of exogenous L-asparagine. S. typhimurium lacking the L-asparaginase II gene are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-asparaginases are used clinically to treat acute lymphoblastic leukemia, yet production of L-asparaginase II by pathogenic bacteria has been unrecognized as a mechanism of microbial immune subversion. The research proposed in this application will 1) determine the mechanism by which L-asparaginase II produced by S. typhimurium inhibits T cell responses and mediates virulence, and 2) determine the role of L-asparaginase II in the pathogenesis of, and host response to, infection with S. typhimurium. Completion of the proposed research will provide answers to important mechanistic questions and will provide a vastly enhanced perspective on the role of T cells in protective immunity against S. typhimurium. Given that the L-asparaginase II gene is highly conserved in Gram-negative bacteria and has been shown to contribute to virulence of several important human pathogens, our findings may extend well beyond S. typhimurium. Insights from the proposed research will have fundamental implications for understanding host interactions with bacterial pathogens and could lead to the development of new broad- spectrum therapeutic approaches and preventive measures to overcome bacterial infectious diseases.

Public Health Relevance

Microbial pathogens that infect humans have evolved the ability to co-opt or subvert the immune response as a strategy to promote disease. This application will investigate a previously unrecognized mechanism of bacterial immune subversion. The proposed research will have significant fundamental implications for understanding host interactions with bacterial pathogens and thus contribute to improving human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
4R01AI101221-04
Application #
9053439
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Alexander, William A
Project Start
2013-05-16
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
State University New York Stony Brook
Department
Genetics
Type
Schools of Medicine
DUNS #
804878247
City
Stony Brook
State
NY
Country
United States
Zip Code
11794
McLaughlin, Patrick A; McClelland, Michael; Yang, Hee-Jeong et al. (2017) Contribution of Asparagine Catabolism to Salmonella Virulence. Infect Immun 85:
McLaughlin, Patrick A; van der Velden, Adrianus W M (2016) Salmonella Gives MARCH(ing) Orders to MHC-II. Cell Host Microbe 20:551-552
Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L et al. (2016) Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming. J Leukoc Biol 99:387-98
Zhang, Yue; Tam, Jason W; Mena, Patricio et al. (2015) CCR2+ Inflammatory Dendritic Cells and Translocation of Antigen by Type III Secretion Are Required for the Exceptionally Large CD8+ T Cell Response to the Protective YopE69-77 Epitope during Yersinia Infection. PLoS Pathog 11:e1005167
Cieniewicz, Brandon; Dong, Qiwen; Li, Gang et al. (2015) Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-1? Production upon Extrinsic Stimulation in Culture. J Virol 89:6562-74
DelGiorno, Kathleen E; Tam, Jason W; Hall, Jason C et al. (2014) Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One 9:e92807
Tam, Jason W; Kullas, Amy L; Mena, Patricio et al. (2014) CD11b+ Ly6Chi Ly6G- immature myeloid cells recruited in response to Salmonella enterica serovar Typhimurium infection exhibit protective and immunosuppressive properties. Infect Immun 82:2606-14
Kullas, Amy L; McClelland, Michael; Yang, Hee-Jeong et al. (2012) L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe 12:791-8