Surveillance data from large and small spatial scales play an essential role in public health decision making and the scientific investigation of infectious disease. However, such data are subject to missing observations, delays in reporting, and observational biases that can lead to increased uncertainty and incorrect conclusions. Existing uncertainty and bias are amplified when we attempt to predict future disease incidence. This project aims to develop and extend statistical and modeling methodologies to correct for biases in surveillance data, impute missing data, predict the course of epidemics, and appropriately characterize uncertainty at relevant spatial scales. An integrated Bayesian framework and Markov chain Monte Carlo methods will be used to combine data from multiple sources at different spatial scales to better understand macro- and micro-scale dengue dynamics in Thailand. Dengue is a mosquito-borne virus which circulates in over 100 countries, is reemerging throughout much of the western hemisphere, and is responsible for an estimated 50 million infections and 19,000 deaths worldwide each year. Specifically, this projects aims to: (1) develop an integrated statistical framework for predicting missing surveillance data by using information from correlated locations and non-traditional data (e.g., search queries);(2) develop methods that exploit mechanistic models of disease transmission and spatial smoothing techniques to bridge the gap between data collected at differing spatial scales while appropriately quantifying uncertainty;and (3) create improved methods for the analysis of spatio- temporal point pattern data that: appropriately account for biases in data collection, elucidate patterns of spatio-temporal dependence at the appropriate scale and define the spatial scale of disease transmission. Methods will be tested and validated using simulated data sets, over four decades of province level dengue surveillance data collected by the Thai Ministry of Public Health, district level surveillance level for over 20 years from several Thai provinces, and point pattern data on the exact location where dengue cases presenting at select hospitals reside. This project will result in the creation and dissemination of novel methods for dealing with bias, missing data and uncertainty in regional, local and point pattern statistics. These methods will aid the appropriate interpretation of macro-levels statistics at the local level and create new tools for using point pattern data to answer scientific questions about disease spread. In addition, fulfillment of these aims will increase our understanding of dengue transmission in Thailand at a variety of spatial scales, improve the Thai dengue surveillance system by providing an integrated approach for predicting future incidence and imputing missing data, and aid in modeling and responding to emerging dengue epidemics elsewhere in the world. The resulting methods will be disseminated in peer reviewed publications and R packages (including source code and validation data sets) freely available on the Comprehensive R network;allowing public health practitioners and researchers from a variety of disciplines to utilize and build upon this work.

Public Health Relevance

Surveillance data from large and small spatial scales play an essential role in public health and the scientific research, but these data are subject to missing observations, delays in reporting, and observational biases. The proposed study aims to develop and extend statistical and modeling methodologies to correct for biases in surveillance data, impute missing data, predict the course of epidemics, and appropriately characterize the uncertainty in estimates and predictions at relevant spatial scales. Methods will be tested and validated using Thai dengue surveillance data, but should be applicable to a wide variety of diseases and contexts.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI102939-01A1
Application #
8528202
Study Section
Modeling and Analysis of Biological Systems Study Section (MABS)
Program Officer
Gezmu, Misrak
Project Start
2013-02-01
Project End
2018-01-31
Budget Start
2013-02-01
Budget End
2014-01-31
Support Year
1
Fiscal Year
2013
Total Cost
$734,713
Indirect Cost
$186,589
Name
Johns Hopkins University
Department
Type
Schools of Public Health
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kankaka, Edward Nelson; Ssekasanvu, Joseph; Prodger, Jessica et al. (2018) Sexual risk behaviors following circumcision among HIV-positive men in Rakai, Uganda. AIDS Care 30:990-996
Olawore, Oluwasolape; Tobian, Aaron A R; Kagaayi, Joseph et al. (2018) Migration and risk of HIV acquisition in Rakai, Uganda: a population-based cohort study. Lancet HIV 5:e181-e189
Mwinnyaa, George; Gray, Ronald H; Grabowski, Mary K et al. (2018) Brief Report: Age-Disparate Relationships and HIV Prevalence Among Never Married Women in Rakai, Uganda. J Acquir Immune Defic Syndr 79:430-434
Lauer, Stephen A; Sakrejda, Krzysztof; Ray, Evan L et al. (2018) Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010-2014. Proc Natl Acad Sci U S A 115:E2175-E2182
Ray, Evan L; Sakrejda, Krzysztof; Lauer, Stephen A et al. (2017) Infectious disease prediction with kernel conditional density estimation. Stat Med 36:4908-4929
Grabowski, M Kate; Serwadda, David M; Gray, Ronald H et al. (2017) HIV Prevention Efforts and Incidence of HIV in Uganda. N Engl J Med 377:2154-2166
Siraj, Amir S; Perkins, T Alex (2017) Assessing the population at risk of Zika virus in Asia - is the emergency really over? BMJ Glob Health 2:e000309
Clapham, Hannah E; Cummings, Derek A T; Johansson, Michael A (2017) Immune status alters the probability of apparent illness due to dengue virus infection: Evidence from a pooled analysis across multiple cohort and cluster studies. PLoS Negl Trop Dis 11:e0005926
Salje, Henrik; Lessler, Justin; Maljkovic Berry, Irina et al. (2017) Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. Science 355:1302-1306
Salje, Henrik; Cummings, Derek A T; Lessler, Justin (2016) Estimating infectious disease transmission distances using the overall distribution of cases. Epidemics 17:10-18

Showing the most recent 10 out of 27 publications